THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAIN EXAMINATION

JANUARY - APRIL 2014 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCE

SCHOOL FOCUSED PROGRAMME

CHEM 309: ELECTROCHEMISTRY

Date: APRIL 2014 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Useful information

Lnx = 2.303 log 10 x

 $0^{\circ}C = 273K$

 $R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1}$

IF = 96485 Cmol-1

$$\frac{RT}{F} \ln x = 0.0591 \log_{10} \times at \ 298K$$

Q1. a) The electrode potential for the electrode $Cl^-/Cl_{2(g)}/Pt$ is given by $E^0/v = 1.484867 + 3.959492 \times 15^4 T - 2.750639 \times 10^{-6} T^2$. In the temperature range 273 – 373K. Calculate:

i)	E ⁰	(3 marks)
ii)	ΔG^0	(3 marks)
iii)	ΔH^0	(3 marks)
iv)	ΔS^0	(3 marks)
at 2	298.15K.	•

b) The transport numbers for HCl at infinite dilutions are estimated to be $t_{+} = 0.821$ and $t_{-} = 0.179$ and the molar conductivity is 426.16

 $\Omega^{-1}cm^2mol^{-1}$. Calculate the mobilities of the hydrogen and chloride ions. (8 marks)

- c) Describe how the transport number are determined using the Hirtoff's method. (10 marks)
- Q2. a) Using the Debye-Huckel limiting equation calculate the mean activity coefficient and the mean activity of a 0.002M CuCl_{2(aq)} solution. (A = $0.51 \ mol^{-1/2} dm^{3/2}$ at 25°C for aqueous solution). (8 marks)
 - b) Explain briefly how the conductance of electrolytes are measured. (6 marks)
 - c) Calculate the liquid junction potential at 25° C between two solutions of HCI of mean ionic activities of 0.1 and 0.01 given that $E_{H+} = 0.828$ and that the electrodes are reversible to H⁺ ions. **(6 marks)**
- Q3. a) Explain **FIVE** factors that affect the conductance of an electrolyte solution. (10 marks)
 - b) Discuss the Arrhenius theory of ionization for CH_3COOH and show how these ideas were expressed by Ostwald. (10 marks)
- Q4. a) Explain **FIVE** types of electrodes used in electrochemistry giving an example for each. (10 marks)
 - b) For the cell $Zn/Zn^{2+}//Fe^{3+}$, Fe^{2+}/pt
 - i) Write the cell reaction.

(2 marks)

- ii) Determine the equilibrium constant given that E⁰ for the reaction is 1.534V at 25°C. (3 marks)
- Q5. a) Explain how a pH glass electrode work.

(10 marks)

- b) Calculate the E_{cell} at 25°C for the cell $Cu/Cu^{2+}(0.50m)//Fe^{3+}(0.40m), Fe^{2+}/0.20m/pt$. Assume that the activity = concentration $E^0Fe^{3+}/Fe^{2+} = 0.771V$ $E^0_{cu^{2+}/cu} = 0.340V$. **(8 marks)**
- c) In the conductimetric titration of a weak acid with a strong base, the transition of the end point is not sharp. Explain. (2 marks)

END