

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157

00200 Nairobi - KENYA

MAIN EXAMINATION

Telephone: 891601-6

Ext 1022/23/25

SEPTEMBER –DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

REGULAR PROGRAMME

CHEM 201: PHYSICAL CHEMISTRY II

Date: DECEMBER 2021 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any TWO Questions

Useful Information

 $R=8.3145 Jk^{-1} mol^{-1}$ $1 atm=101325 N/m^2$

Q1. a) Using the 1st and 2nd laws of thermodynamics, show that:

 $\Delta s = CvInT + RInV \tag{7}$

marks)

- b) One mol of an ideal gas at 25°c was allowed to expand isothermally and reversibly from 1080.25 KPa to 10.8025kPa against a pressure that was gradually reduced. Calculate
 - (i) the work done.

(3 marks)

(ii) ΔE , ΔH and Q

(6 marks)

(iii) Δs and ΔG

(6

marks)

- c) Briefly define the following terms as used in thermodynamics.
 - (i) state variables
 - (ii) extensive properties
 - (iii) entropy

(iv) reversible process

(8 marks)

Q2. a) Using the pathways or otherwise derive the Kirchoff's equation

$$\Delta H_{r,T}^{o} = \Delta H_{r,298}^{o} + \left(\int_{298}^{T} \left(C_{p,P} - C_{pR} \right) dT \right)$$

(10 marks)

- b) Using a carnot cycle show that entropy is a state function. (10 marks)
- Q3. a) Briefly discuss how the change in temperature affects the spontaneity of a given reaction. (8

marks)

b) Calculate the temperature at which it is thermodynamically possible for carbon to reduce iron (iii) oxide to iron under standard conditions by the endothermic reaction. ${}^2Fe_2O_{3_{[s]}} + 3\,C_{(s)} \rightarrow 4\,Fe_{(s)} + 3\,CO_{2_{[G]}}$

Component	$\Delta H_f/K$ jm	ol^{-1} S°/Jmol ^{-1}k
$Fe_2O_{3_{ s }}$	-824.2	89.4
$C_{(S)}$	0	5.7
$Fe_{[s]}$	0	27.3
$CO_{2_{[G]}}$	-393.5	213.7

(8 marks)

- c) Calculate the work done when 1.5 mol of a gas expands from 10dm³ to 15dm³ against a constant pressure of 1 atmosphere.
- Q4. a) (i) Plot on the some graph the variation of absolute entropy versus temperature for H₂ and CH₃Cl in the range 0k to 300k. **(6 marks)**
 - (ii) Explain the variation for the graph in (i). (4 marks)
 - b) Liquid water at 373k is in equilibrium with water vapour at 1 atm pressure if $^{\Delta H}_{vap}$ at 373k in 40.60kj mol⁻¹. Calculate
 - (i) ΔG and ΔS
 - Suppose the water vapour pressure is 0.900 atm. What are the values of ΔG and ΔS for the vapourization process? (6

marks)

- Q5. a) Consider the system $M_{(g)} = N_{(g)}$ at 25°c. Given that $G^{^0M} = 8996 \, Jmol^{^{-1}}$ and $G^{^0N} = 11718 \, Jmol^{^{-1}}$, Calculate the value of the equilibrium constant for this reaction. (6 marks)
 - b) Calculate the equilibrium pressure that results if 1.00mol $M_{(g)}$ at 1.00 atm and 1.00 mol $N_{(g)}$ at 1.00 atm are mixed together at 25°c. (8 marks)
 - c) Given that G= H-TS, E = Q + W and H = E+PV. Show that for 1 mol of an ideal gas dG = Vdp-SdT. (6 marks)

END

