

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157

00200 Nairobi - KENYA

MAIN EXAMINATION

Telephone: 891601-6

SEPTEMBER -DECEMBER 2021

Ext 1022/23/25

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

REGULAR PROGRAMME

CHEM 301: COORDINATION CHEMISTRY

Date: DECEMBER 2021 Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any TWO Questions

Q1.

(a). Differentiate between counter and complex ions.

(4 marks)

(b). What is a polydentate ligand?

(2 marks)

- (c). There is valency failure when it comes to explaining the formation of complex ions. Explain. (3 marks)
- (d). What are the two possible geometries/shapes of an ML₅ coordination compound? (4 marks)

(e).Differentiate between spectrochemical and nephelauxetic series.

(4 marks)

(f). Explain why the metal-ligand interaction is said to be an acid-base reaction.

(3 marks)

(g). Why is crystal field splitting generally greater in octahedral than in		
tetrahedral complexes?	(4 marks)	
(h). In stepwise mechanisms, the first stepwise stability constant is the largest.		
Explain.	(3 marks)	
(i). What are transition metals?	(2 marks)	
(j). Given an atomic number of a transition metal, explain how one calculates the		
value of n in d ⁿ (3 ma	ırks)	
Q2.		
(a). Using suitable examples, differentiate between homoleptic and heteroleptic		
complexes.	(4 marks)	
(b). What is coordination isomerism?	(4 marks)	
(c). Determine the correct hybridization in each of the following:		
(i). Tetrahedral geometry		
(ii). Square planar geometry		
	(6 marks)	
(d). Explain the meaning of the following special symbols $\;\mu,\eta$ and K as	used in	
coordination chemistry.	(6 marks)	

determination of shapes of complexes.	(6 marks)
(a). Using suitable examples, explain the Kepert Model as applied to the	
Q3.	

(b). Draw a well-labeled δ (sigma) only octahedral molecular orbital diagram.

(14 marks)

Q4.

- (a). Calculate the number of microstates associated with a d² system. (3 marks)
- (b). Determine and arrange the free ion terms of a p2 system starting with the least energetic. (8 marks)
- (c). Differentiate between allowed and forbidden electronic transitions. (4 marks)
- (d). Explain how distortion of molecular geometry or shape affects the arrangement of its molecular orbitals. (6 marks)

Q5.

- (a). Explain the derivation of a square planar geometry from an octahedral geometry. (6 marks)
- (b).Draw the molecular orbital diagram when the field changes from octahedral to square planar. Start with an octahedral field. (8 marks)
- (c). What do you understand by the following terms as applied to coordination Chemistry?
- (i). Strong field
- (ii). Weak field

(6 marks)

END