THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

JANUARY – APRIL 2014 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCE

SCHOOL FOCUSED PROGRAMME

CHEM 104: CHEMICAL BONDING AND STRUCTURE

Date: APRIL 2014	Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and ANY OTHER	TWO Questions

Q1.	a)	Explain the plum pudding model of an atom as s Thomson in 1904.	suggested by (3 marks)
	b)	Derive a formula for determining the de Broglie wavele use to determine the de Broglie wavelength of mass m moving with a velocity v = 10 m/s. (Planck's $6.6 \times 10^{-34} J - s$)	n = 1.0 kg and
	c) What do you understand by wave - particle duality? (3 ma		(3 marks)
	d)	What is a chemical bond?	(3 marks)
	e)	The Lewis theory of bonding cannot explain the bonding in CH ₄ . Explain. (4 marks) In a p orbital, the electron density changes with both the distance from the center of the atom and the direction. Explain using appropriate diagrams. (3 marks)	
	f)		
	g)	Draw the resonance structures of CO_3^{2-} .	(3 marks)

CUEA/ACD/EXM/JANUARY – APRIL 2014/CHEMISTRY

Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

h) Explain the importance of "wave interference" concept in bonding. (4 marks)

- i) What do you understand by Lattice energy? (3 marks)
- Q2. a) Starting from an atomic number, explain how one can use the four quantum numbers to determine the location of a particular element in the periodic table. (5 marks)
 - b) List any **FOUR** major highlights of Dalton's atomic theory.

(4 marks)

- c) Differentiate between exothermic and endothermic bond formation reactions. (4 marks)
- d) Molecular orbital theory is superior to Valence Bond Theory. Using O₂ illustrate the correctness of the above statement. (7 marks)
- Q3. a) Using bonds table approach, determine the Lewis Dot structure of ClO_4^- . (8 marks)
 - b) Using an example, outline the sequence of steps necessary in determining the geometries of molecules. (6 marks)
 - c) Explain the **THREE** main rules used in drawing contributing resonance structures. (6 marks)
- Q4. a) Explain the **FOUR** main guidelines in constructing a molecular orbital diagram. (4 marks)
 - b) Draw a molecular orbital diagram for the molecule NO. (6 marks)
 - c) Explain the following properties associated with metallic compounds:
 i) Malleability and ductility
 - i) Maleability and ductility
 - ii) Heat and electrical conduction
 - iii) Shiny
 - iv) Solids
 - v) Photoelectric effect (10 marks)
- Q5. a) Discuss the Born-Haber cycle diagram and explain all the steps on it. (12 marks)

CUEA/ACD/EXM/JANUARY – APRIL 2014/CHEMISTRY

ISO 9001:2008 Certified by the Kenya Bureau of Standards

b)	What do you understand by electronegativity?	(4 marks)
----	--	-----------

c) Using metallic character as the main determinant, determine the location of metals and non-metals in the periodic table. **(4 marks)**

CUEA/ACD/EXM/JANUARY – APRIL 2014/CHEMISTRY

Page 3

ISO 9001:2008 Certified by the Kenya Bureau of Standards