THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6

--- -- -----

JANUARY – APRIL 2019 TRIMESTER

FACULTY OF COMMERCE

DEPARTMENT OF ACCOUNTING AND FINANCE

REGULAR / ODEL PROGRAMME

CMS 121: BUSINESS MATHEMATICS

Date: APRIL 2019Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Q1. a) Given that $A = \{3, 7, -5, 0, 13\}$ $B = \{0, 17, 3, Blue, @\}$ $C = \{Pink, @, 3, 17\}$ Find A\{An(B\C)}u(BnC)

(5 marks)

b) Some forty people were asked about their preferences as far as the daily newspapers are A, B and D. it was noted that those who buy newspaper A do not buy newspaper D and vice versa. Six (6) of them were found to buy newspaper D only, seven (7) bought newspapers A and B. Five (5) bought newspaper B only while 10 bought newspaper A only. Four (4) of them do not buy any single paper.

Required:

marks)

a) Determine the number of persons who buy at least newspaper B

(2.5

Page 1

b) Identify the most popular newspaper. (2.5 marks)

c) Differentiate a) $3x^5 + 4x^3 - x - 3$ (2.5 marks) b) $3x^2 + 2\sqrt{x}$ (2.5 marks) c) $4 + \frac{3}{x}$ (2.5 marks)

Cuea/ACD/EXM/JANUARY – APRIL 2019/ACCOUNTING AND FINANCE

$$\frac{2x + \sqrt{x}}{x^2}$$
 (2.5 marks)

Q2. 1) A company that produces mirrors for telescopes estimates the values for the following functions when 1200 mirrors are produced: R(1200)= \$30,000, C(1200)= \$23,000, MR(1200)= \$400, and MC(1200)= \$100. Due to a change in the economy, the revenue function decreased by \$5000 and cost increased by 10%. Determine the revenue, cost, marginal revenue, and marginal cost under the new economic conditions if 1200 mirrors are produced. (10 marks)

2) Find
$$\frac{dy}{dx}$$
 if $y = (x + \frac{1}{x})\log x$ (5 marks)

3) If
$$u = 2x^2 + 3xy + 4y^2$$
 find $\frac{du}{dx}$ and $\frac{du}{dy}$ (5 marks)

4) Evaluate
$$\int \left(\frac{x^2+2x-1}{\sqrt{x}}\dot{\iota}\right) dx\dot{\iota}$$
 (5)

marks)

d)

- Q3. Find the maximum and minimum values of the following functions:
 - i) $x^{3} 3x^{2} 9x + 27$ (5 marks) ii) $\frac{2}{3}x^{3} + \frac{1}{2}x^{2} - 6x + 8$ (5 marks) iii) $x^{4} + 2x^{3} - 3x^{2} - 4x + 4$ (5 marks)

iii)
$$x^{4} + 2x^{5} - 3x^{2} - 4x + 4$$
 (5 marks)
iv) $8x^{5} - 15x^{4} + 10x^{2}$ (5 marks)

- Q4. Of the 8 equal candidates for a job, 3 are qualified accountants, 4 are graduates and 2 have neither of these qualifications. Find:
 - i) The probability that a graduate gets the job. (6 marks)
 - ii) Given that a qualified accountant has got the job, the probability that he is a graduate. (7 marks)
 - iii) The probability that a qualified accountant gets the job, given that a graduate did not get the job. (7 marks)

CMS 121 BUSINESS MATHEMATICS FORMULAE

2. ⁿP_ror _nP_r =
$$\frac{n!}{(n-1)!}$$

3.
$$^{n}P_{n} = n!$$

Cuea/ACD/EXM/JANUARY – APRIL 2019/ACCOUNTING AND FINANCE

Page 2

4.
$$n! = n(n-1)(n-2)(n-3)...1$$

5. ${}^{n}P_{r} = n(n-1)(n-2)(n-3)...[n-(r-1)]$
6. ${}^{n}C_{r}$ or ${}_{n}C_{n} = \frac{n(n-1)!(n-2)[n-3]...[n-(r-1)]}{r!}$
7. ${}^{n}C_{r} = \frac{n!}{r!(n-1)!}$ Where $r = 0.1,2,3...n$
8. ${}^{n}C_{0} = 1$
9. ${}^{n}C_{n} = 1$
10. ${}^{n}C_{nr} = {}^{n}C_{n}$, where $r = 0,1,2,3...n$
11. ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
12. ${}^{n}C_{nr} = \frac{n!}{(n-1)!r!}$ where $r = 0,1,2,3...n$
13. $\frac{d}{dx}(x^{n}) = n_{x}{}^{n-1}$
14. $\frac{d}{dx}$ (constant) = 0 (zero)
15. $\frac{d}{dx}$ (constant x function) = constant $x \frac{d}{dx} x$ function
16. $\frac{d}{dx}(u + v) = \frac{du}{dx} + \frac{dv}{dx}$
17. $\frac{d}{dx}(u + v + w + ...) = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} + ...$
18. $\frac{d}{dx}(u - v) = \frac{du}{dx} - \frac{dv}{dx}$
19. $\frac{d}{dx}(u - v - w - ...) = \frac{du}{dx} - \frac{dv}{dx} - \frac{dw}{dx} - ...$
20. $\frac{d}{dx}(uv) = u\frac{dv}{dx}(v) + v \frac{du}{dx}(u)$
21. $\frac{d}{dx}(\frac{u}{v}) = \frac{v\frac{du}{dx}u - u\frac{dv}{dx}v}{v^{2}} = Dr i i$
22. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}}$
23. $\frac{d}{dx}(a^{x}i = a^{x} \log a)$
24. $\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \cdot \frac{dy}{dx} + uw\frac{dv}{dx} + vw\frac{du}{dx}$

Cuea/ACD/EXM/JANUARY – APRIL 2019/ACCOUNTING AND FINANCE

Page 3

26.
$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c$$
27.
$$\int \frac{1}{x} dx = \log_{e} x + c$$
28.
$$\int e^{e^{\alpha}} dx = \frac{e^{\alpha}}{a} + c$$
29.
$$\int a^{a} dx = \frac{a^{\alpha}}{\log a} + c$$
30.
$$\int k dx = kx + c$$
31.
$$\int e^{a} dx = e^{x} + c$$
32.
$$\int 1.dx = x + c$$
33.
$$\int ill = \frac{1}{a}.ill + c$$
34.
$$\int \frac{dx}{ax+b} = \frac{1}{a}.\log(ax+b) + c$$
35.
$$\int e^{ax+b} dx = \frac{1}{a}.e^{ax+b} + c$$
36.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx + c \text{ OR } \int uv dx = uv^{1} + u^{1}v^{2} + u^{n}v^{3} - u^{n}v^{4} - ...$$
37.
$$\int_{-a}^{a} f(x) dx = \left[2 \int_{0}^{a} f(x) dx = if f(x) \text{ is even} \\ 0 if f(x) \text{ is 0 } dd \right]$$
38.
$$\int_{a}^{b} f(x) dx = [g(x) + c]_{a}^{b} \square \\ = [g(b) + c] - [g(a) + c] \\ = g(b) - g(a)$$
39.
$$\int \frac{f'(x)}{f(x)} dx \text{ where } f(x) \text{ is the derivative of } f(x)$$
Put $f(x) = t$, then $f(x) dx = dt$
Thus $\int \frac{f'(x)}{f(x)} dx = \frac{1}{a} \frac{dt}{r}$
41.
$$\int f'(ax+b) dx, \text{ put } (ax+b) = i, \text{ then } ax = dt, dx = \frac{dt}{a}$$
Thus $\int f'(ax+b) dx = \int f'(t) \frac{dt}{a} = \frac{1}{a} \int f'(t) dt = \frac{1}{a} [f(t)] = \frac{f(ax+b)}{a}$

Cuea/ACD/EXM/JANUARY – APRIL 2019/ACCOUNTING AND FINANCE

Page 4

- 42. Revenue = price times quantity R(x) = Px
- 43. Profit = revenue minus cost P(x) = R(x) - C(x)
- 44. Breakeven point (BEP) Revenue = Cost R(x) = C(x)Profit = zero (0) P(x) = 0

END

Cuea/ACD/EXM/JANUARY – APRIL 2019/ACCOUNTING AND FINANCE

Page 5