A. M. E. C. E. A
 MAIN EXAMINATION
 JANUARY - APRIL 2019 TRIMESTER
 FACULTY OF COMMERCE
 DEPARTMENT OF ACCOUNTING AND FINANCE
 REGULAR / ODEL PROGRAMME

CMS 121: BUSINESS MATHEMATICS

Date: APRIL 2019
Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Q1. a) Given that
$A=\{3,7,-5,0,13\}$
$B=\{0,17,3$, Blue, $@\}$
C = \{Pink, @, 3, 17\}
Find $\mathrm{A} \backslash\{\mathrm{An}(\mathrm{B} \backslash \mathrm{C})\} \mathrm{u}(\mathrm{BnC})$
b) Some forty people were asked about their preferences as far as the daily newspapers are A, B and D. it was noted that those who buy newspaper A do not buy newspaper D and vice versa. Six (6) of them were found to buy newspaper D only, seven (7) bought newspapers A and B. Five (5) bought newspaper B only while 10 bought newspaper A only. Four (4) of them do not buy any single paper.

Required:
a) Determine the number of persons who buy at least newspaper B marks)
b) Identify the most popular newspaper.
(2.5 marks)
c) Differentiate
a) $3 x^{5}+4 x^{3}-x-3$
(2.5 marks)
b) $3 x^{2}+2 \sqrt{x}$
(2.5 marks)
c) $4+\frac{3}{x}$
(2.5 marks)
d) $\frac{2 x+\sqrt{ } x}{x^{2}}$
(2.5 marks)

Q2. 1) A company that produces mirrors for telescopes estimates the values for the following functions when 1200 mirrors are produced: $R(1200)=$ $\$ 30,000, \mathrm{C}(1200)=\$ 23,000, \mathrm{MR}(1200)=\$ 400$, and $\mathrm{MC}(1200)=\$ 100$. Due to a change in the economy, the revenue function decreased by $\$ 5000$ and cost increased by 10%. Determine the revenue, cost, marginal revenue, and marginal cost under the new economic conditions if 1200 mirrors are produced.
(10 marks)
2) Find $\frac{d y}{d x}$ if $\mathrm{y}=\left(\mathrm{x}+\frac{1}{x}\right) \log \mathrm{x}$
(5 marks)
3) If $u=2 x^{2}+3 x y+4 y^{2}$ find $\frac{d u}{d x}$ and $\frac{d u}{d y}$
(5 marks)
4) Evaluate $\int\left(\frac{x^{2}+2 x-1}{\sqrt{x}} i\right) d x i$
marks)
Q3. Find the maximum and minimum values of the following functions:
i) $x^{3}-3 x^{2}-9 x+27$
(5 marks)
ii) $\frac{2}{3} x^{3}+\frac{1}{2} x^{2}-6 x+8$
(5 marks)
iii) $x^{4}+2 x^{3}-3 x^{2}-4 x+4$
(5 marks)
iv) $8 x^{5}-15 x^{4}+10 x^{2}$

Q4. Of the 8 equal candidates for a job, 3 are qualified accountants, 4 are graduates and 2 have neither of these qualifications. Find:
i) The probability that a graduate gets the job.
(6 marks)
ii) Given that a qualified accountant has got the job, the probability that he is a graduate.
iii) The probability that a qualified accountant gets the job, given that a graduate did not get the job.
(7 marks)

CMS 121 BUSINESS MATHEMATICS FORMULAE

1. $0!=1$
2. ${ }^{n} \mathrm{P}_{\mathrm{r}}$ or ${ }_{n} \mathrm{P}_{\mathrm{r}}=\frac{n!}{(n-1)!}$
3. ${ }^{n} P_{n}=n$!
4. $n!=n(n-1)(n-2)(n-3) \ldots 1$
5. ${ }^{n} P_{r}=n(n-1)(n-2)(n-3) \ldots[n-(r-1)]$
6. ${ }^{n} \mathrm{C}_{\mathrm{r}}$ or ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=\frac{n(n-1)(n-2)(n-3) \ldots[n-(r-1)]}{r!}$
7. ${ }^{n} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-1)!}$ Where $\mathrm{r}=0.1,2,3 \ldots \mathrm{n}$
8. ${ }^{n} \mathrm{C}_{0}=1$
9. ${ }^{n} \mathrm{C}_{\mathrm{n}}=1$
10. ${ }^{n} C_{n-r}={ }^{n} C_{r}$, where $r=0,1,2,3 \ldots n$
11. $\quad{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
12. $\quad{ }^{n} C_{n-r}=\frac{n!}{(n-1)!r!}$ where $r=0,1,2,3 \ldots n$
13. $\frac{d}{d x}\left(x^{n}\right)=\mathrm{n} x^{n-1}$
14. $\frac{d}{d x}$ (constant) $=0$ (zero)
15. $\frac{d}{d x}($ constant x function $)=$ constant $\mathrm{x} \frac{d}{d x} \times$ function
16. $\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}$
17. $\frac{d}{d x}(u+v+w+\ldots)=\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}+\ldots$
18. $\frac{d}{d x}(\mathrm{u}-\mathrm{v})=\frac{d u}{d x}-\frac{d v}{d x}$
19. $\frac{d}{d x}(u-v-w-\ldots)=\frac{d u}{d x}-\frac{d v}{d x}-\frac{d w}{d x}-\ldots$
20. $\quad \frac{d}{d x}(u v)=u \frac{d v}{d x}(v)+v \frac{d u}{d x}(\mathrm{u})$
21. $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x} u-u \frac{d v}{d x} v}{v^{2}}=\operatorname{Dri} i$
22. $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
23. $\frac{d}{d x}\left(a^{x} i=a^{x} \log a\right.$
24. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x} \cdot \frac{d y}{d x}$
25. $\quad \frac{d}{d x}(\mathrm{uvw})=\mathrm{uv} \frac{d w}{d x}+\mathrm{uw} \frac{d v}{d x}+\mathrm{vw} \frac{d u}{d x}$
26. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$
27. $\int \frac{1}{x} d x=\log _{\mathrm{e}} \mathrm{x}+\mathrm{c}$
28. $\int e^{a x} d x=\frac{e^{a x}}{a}+c$
29. $\int a^{x} d x=\frac{a^{x}}{\log a}+c$
30. $\int k d x=k x+c$
31. $\int e^{x} d x=e^{x}+\mathrm{c}$
32. $\int 1 . d x=\mathrm{x}+\mathrm{c}$
33. $\int i b=\frac{1}{a} \cdot i b+c$
34. $\int \frac{d x}{a x+b}=\frac{1}{a} \cdot \log (\mathrm{ax}+\mathrm{b})+\mathrm{c}$
35. $\int e^{a x+b} d x=\frac{1}{a} \cdot e^{a x+b}+\mathrm{c}$
36. $\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x+c$ OR $\int u v d x=u v^{1}+u^{\prime} v^{2}+u^{\prime \prime} v^{3}-u^{\prime \prime \prime} v^{4}-\ldots$
37. $\quad \int_{-a}^{a} f(x) d x=\left\{\begin{array}{c}2 \int_{0}^{a} f(x) d x=\text { if } f(x) \text { is even } \\ 0 \text { if } f(x) \text { is } 0 d d\end{array}\right.$
38. $\int_{a}^{h} f(x) d x=[g(\mathrm{x})+\mathrm{c}]_{a}^{h} \square$

$$
\begin{aligned}
& =\{g(b)+c\}-\{g(a)+c\} \\
& =g(\mathrm{~b})-\mathrm{g}(\mathrm{a})
\end{aligned}
$$

39. $\int \frac{f^{\prime}(x)}{f(x)} d x$ where $\mathrm{f}^{\prime}(\mathrm{x})$ is the derivative of $\mathrm{f}(\mathrm{x})$

Put $f(x)=t$, then $f^{\prime}(x) d x=d t$
Thus $\int \frac{f^{\prime}(x)}{f(x)} d x=\int \frac{d t}{t} \log \mathrm{t}=\log \mathrm{f}(\mathrm{x})$
40. $\int i<$ put $f(x)=t$, then $f^{\prime}(x) \mathrm{dx}=\mathrm{dt}$

Thus $i=\int t^{n} d t=\frac{t^{n+1}}{n+1}=i b$
41. $\int f^{\prime}(a x+b) d x$, put $(\mathrm{ax}+\mathrm{b})=\mathrm{i}$, then $\mathrm{adx}=\mathrm{dt}, \mathrm{dx}=\frac{d t}{a}$

Thus $\int f^{\prime}(a x+b) d x=\int f^{\prime}(t) \frac{d t}{a}=\frac{1}{a} \int f^{\prime}(t) d t=\frac{1}{a}[f(t)]=\frac{f(a x+b)}{a}$
42. \quad Revenue $=$ price times quantity $R(x)=P x$
43. Profit $=$ revenue minus cost
$P(x)=R(x)-C(x)$
44. Breakeven point (BEP)

Revenue $=$ Cost $\quad R(x)=C(x)$
Profit = zero (0) $\quad P(x)=0$
END

