A. M. E. C. E. A
MAIN EXAMINATION
JANUARY - APRIL 2019 TRIMESTER
FACULTY OF COMMERCE
\section*{DEPARTMENT OF ACCOUNTING AND FINANCE}
REGULAR PROGRAMME

CID 072: FOUNDATIONS OF BUSINESS MATHEMATICS

Date: APRIL 2019
Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Q1. a) Some forty (40) people were asked about their preferences as far as the daily papers are A, B and D. It was noted that those who buy Newspaper A do not buy Newspaper D and vice versa. Six (6) of them were found to buy newspaper D only, seven (7) bought Newspaper A and B. Five (5) bought newspaper B only, while ten (10) bought Newspaper A only. Four (4) of them do not buy any single paper. Determine the number of persons who buy at least newspaper B. Identify the most popular Newspaper.
b) Two fair dices are tossed once. Let S be the sum of numbers showing up A and B be the following events.

A: sum is at most 5
B: at least one of the dices shows a " 2 "
Determine:
i) $P(A)$
ii) $P(B)$
iii) $P(A \cap B)$
iv) $P(A \cup B)$
v) $P\left(A^{c} \backslash B^{c}\right)$
vi) $P\left[(A \cap B)^{c} \cup(A \backslash B)\right]$

Q2. a) Solve the following simultaneous equations:

$$
\begin{aligned}
& x-y+z=2 \\
& x+2 y-2 z=-1 \\
& -x+2 y+2 z=9
\end{aligned}
$$

b) $3 y+y-z=2$

$$
\begin{align*}
& x+2 y-z=2 \\
& 5 x+3 y+z=14 \tag{5marks}
\end{align*}
$$

c) $38+2 p=6 q$
$5 p+8 q=89$
(5 marks)
d) $\quad 5 x-2 y=7$
$3 x+8 q=21$
(5 marks)
Q3. a) Solve the following LP problem graphically
Minimize $\quad 2 x_{1}+1.7 x_{2}$
Subject to: $\quad 0.15 x_{1}+0.10 x_{2} \geq 1.0$
$0.75 x_{1}+1.70 x_{2} \geq 7.5$
$1.30 x_{1}+1.10 x_{2} \geq 10.0$
$x 1, x 2 \geq 0$
b) Solve the following problem graphically

Maximize $4 x_{1}+4 x_{2}$
Subject to: $-2 x_{1}+x_{2} \leq 1$
$x_{1} \leq 2$
$x_{1}+x_{2} \leq 3$
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
(20 marks)
Q4. a) Use Pascal's triangle to expand the following binomial expression:

i) $(1+3 x)^{2}$	(5 marks)
ii) $(a-b)^{7}$	(5 marks)
iii) $(1-5 x)^{5}$	(5 marks)

b) Find the coefficient of x^{5} in the expansion of $(1+4 x)^{9}$

THE LIST OF FORMULAE

A. Covariance $\left(\operatorname{cov}_{(x y)}\right.$ or $\left.S_{x y}\right)=\frac{1}{N} \sum\left(x_{i}-\ddot{X}\right)\left(y_{i}-\dot{Y}\right)$
B. $\operatorname{cov}_{(x y)}$ or $S_{x y}=\left(\frac{1}{N} \sum x_{i} y_{i}\right)-\ddot{X} \dot{Y}$
C. Coefficient of Correlation $\left(\mathrm{r}_{x y}\right)=\frac{S x y}{S x S y}$
D.

$$
r=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{\sqrt{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}} \sqrt{n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}}}
$$

E. Rank correlation coefficient or spearman's rank correlation coefficient $\left(r_{s}\right)$
F. $\quad \rho=1-\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)}$
G. Method of least squares
H. $\sum y=n a+b \sum x_{i}$
I. $\sum y_{i} x_{i}=a \sum x_{i}+b \sum x_{i}^{2}$
J.
K. $\sum \mathrm{x}_{\mathrm{i}}=\mathrm{na}+\mathrm{b} \sum \mathrm{y}_{\mathrm{i}}$
L. $\sum \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=\mathrm{a} \sum \mathrm{y}_{\mathrm{i}}+\mathrm{b} \sum \mathrm{y}_{\mathrm{i}}^{2}$
M.
N. Kendall Rank correlation
O. $\frac{1}{2} n(n-1)$
P. Pearson r correlation
Q.
$\gamma=\frac{\mathrm{N} \sum \mathrm{xy}-\sum(\mathrm{z})(\mathrm{y})}{\sqrt{\left.N \sum x^{2}-\sum\left(x^{2}\right)\right]\left[N \sum y^{2}-\sum\left(y^{2}\right)\right]}}$

$$
\begin{aligned}
& b=\frac{n\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{n\left(\sum X^{2}\right)-\left(\sum X\right)^{2}} \\
& a=\frac{\left(\sum Y\right)-b\left(\sum X\right)}{n}
\end{aligned}
$$

R. $L S M A=a+b X$
S. $b=r_{x y}-\frac{S y}{S x}$
T. $a=\dot{Y}-b \ddot{X}$
U.
V. $\widehat{\mathrm{b}}=\frac{\sum x i y i-n \ddot{X} \dot{Y}}{\sum x^{2}-n \ddot{X}^{2}}$
W.
X. $\mathrm{b}_{x y}=\mathrm{r} \frac{\delta x}{\delta y}$
Y.
Z. $\mathrm{b}_{\mathrm{xy}}=\mathrm{r} \frac{\sum x y}{\sum y 2}$

AA.
BB. $\quad \mathrm{b}_{\mathrm{xy}}=\frac{N \sum d x d y-\sum d x \sum d y}{N \sum d y 2-\left(\sum d y\right)^{2}}$
CC.

DD. $\quad \mathrm{b}_{\mathrm{xy}}=\frac{N \sum d x d y-\sum d x \sum d y}{N \sum d x 2-\left(\sum d x\right)^{2}}$
EE.
FF. $\quad r=\sqrt{ }\left(b_{x y} x b_{y x}\right)$

GG. $P(n, r)={ }^{n} P_{r}={ }_{n} P_{r}=\frac{n!}{(n-r)!}$

HH.

$$
C(n, r)={ }^{n} C_{r}={ }_{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

II.
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$.

JJ.

$$
P(A \mid B)=\frac{P(A) \cdot P(B)}{P(B)}=P(A)
$$

KK.

$$
P(B \mid A)=P(A \mid B) \cdot \frac{P(B)}{P(A)}
$$

LL. $P(A)=1-P\left(A^{\prime}\right)$
MM. $\quad P(A \cap B)=P(A) P(B \mid A)$

NN. $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B))$
OO. $P(A \cup B)=P(A)+P(B)-P(A) P(B \mid A)$

END

