## THE CATHOLIC UNIVERSITY OF EASTERN AFRICA



A. M. E. C. E. A

P.O. Box 62157

00200 Nairobi - KENYA

MAIN EXAMINATION

Telephone: 891601-6

JANUARY – APRIL 2019 TRIMESTER

**FACULTY OF SCIENCE** 

**DEPARTMENT OF NATURAL SCIENCE (CHEMISTRY)** 

**REGULAR PROGRAMME** 

**CHEM 305: ORGANIC SPECTROSCOPY** 

Date: APRIL 2019 Duration: 2 Hours

**INSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions** 

- Q1. a) Explain the following terms as used in the study of organic spectroscopy. Use appropriate examples. (5 Marks)
  - i) Chromophores
  - ii) IR stretches and bends
  - iii) Chemical shift
  - iv) Molecular ion
  - b) i) Explain the working principle of a UVvis spectrophotometer

(3 marks)

- ii) Given that, the correlations of conjugated diene according to Woodward-Feiser rules are as follows:
  - i) Base value for homoannulardiene = 253 nm
  - ii) Base value for heteroannulardiene = 214 nm
  - iii) Alkyl substituent or Ring residue attached to the parent diene = 5 nm
  - iv) Double bond extending conjugation = 30 nm
  - v) Exocyclic double bonds = 5 nm
  - vi) Polar groups: -OAc = 0 nm

-OAlkyl = 6 nm

-Cl, -Br = 5 nm

Calculate the absorption maximum for 1-methylcyclohexa-1,3-diene

(2

marks)

- c) i) A sample of an organic compound with a mass of 1.224 g was completely burned in oxygen and found to produce 2.340 g of carbon (IV) oxide and 1.433 g of water only. The molecular mass of the compound was 46.0 a.m.u.
  - i) Calculate the empirical and molecular formula of the organic compound. (3 marks)
  - ii) Propose possible functional isomers of the compound. (2 marks)
  - ii) Consider the mass spectrum of benzoic acid (Figure 1) and identify the ions responsible for the major peaks. (2 marks)

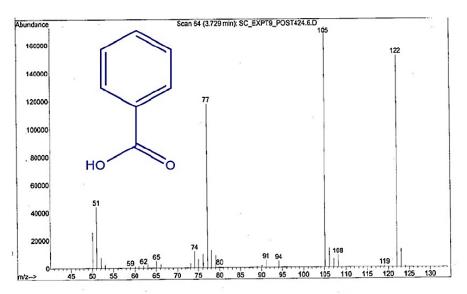



Figure 1

d) The IR spectra in **Figure 2 and 3** are of ethanol and ethanoic acid. Draw the full structural formula for both compounds, and then determine giving reasons, which spectrum is due to which compound. **(4 marks)** 



Figure 2

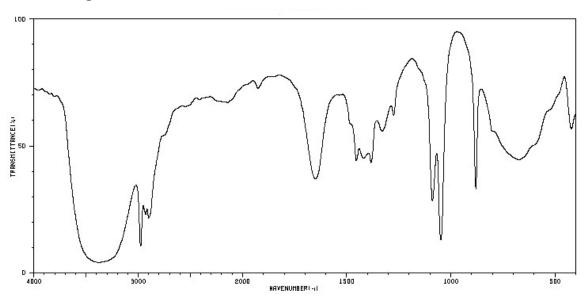



Figure 3

- e) Predict the multiplicities of the signals in the proton NMR spectra of the following compounds. (5 Marks)
  - i) CH<sub>3</sub>CH(CI)CH<sub>2</sub>CH<sub>2</sub>CI
  - ii) CH<sub>3</sub>CO<sub>2</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>3</sub>
- f) The following is data from IR (**Figure 4a**) and <sup>1</sup>H NMR spectra (300 MHz) (**Figure 4b**) of a compound A. The molecular formula of compound A is C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> and it contains one unsaturation. (4 marks)

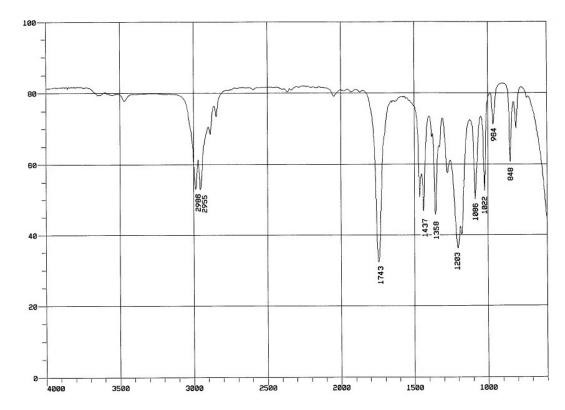



Figure 4a

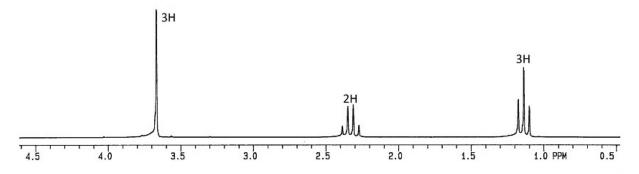



Figure 4b

Q2. a) The spectra provided below **(Figure 5 a - d)** were obtained when a molecules was analyzed. Use the spectra to provide a structure that is consistent with the data. (Give your reasoning). **(10 marks)** 

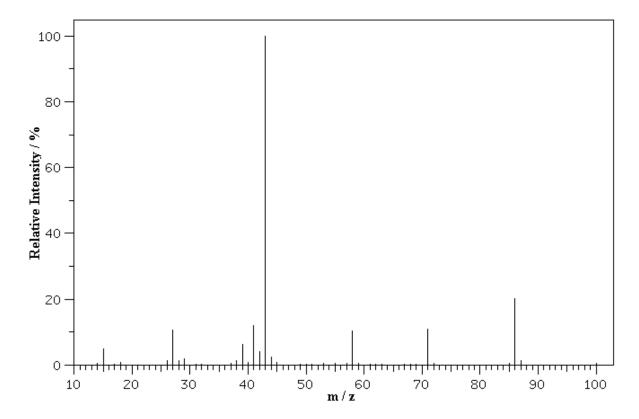



Figure 5a




Figure 5b

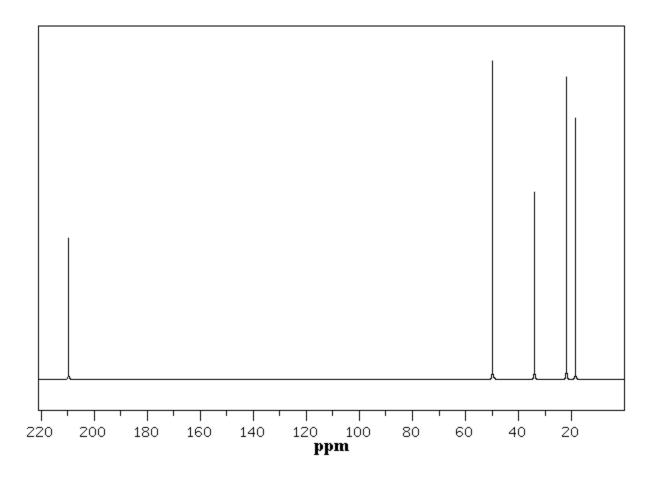
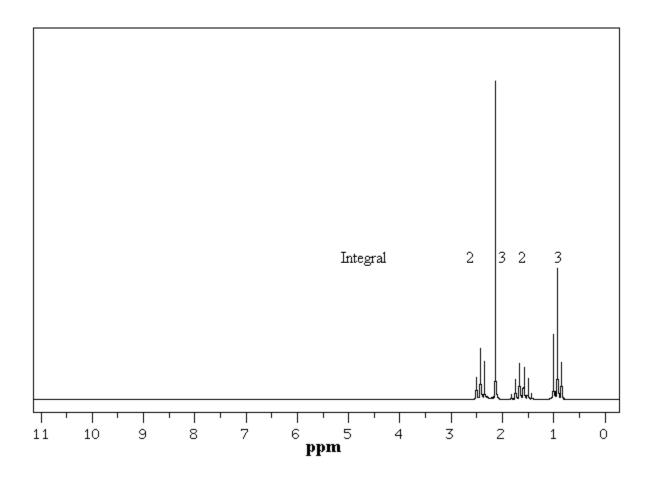
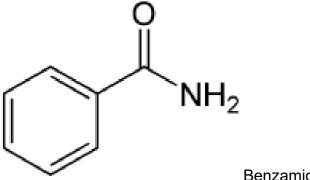
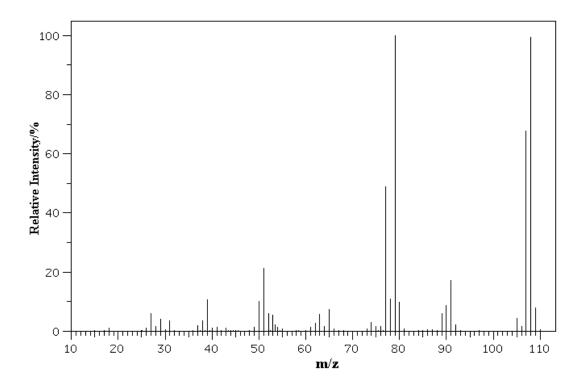



Figure 5c



Figure 5d

- b) Give structure(s) consistent with each of the following sets of NMR data:
  - i)  $C_9H_{11}Br: \delta 2.15$  (2H quintet),  $\delta 2.75$  (2H, singlet), 3.38 (2H, triplet) and  $\delta 7.22$  (5H, singlet) (5 marks)
  - ii)  $C_6H_{10}$ : triplet  $\delta$  22.9, triplet  $\delta$  25.3 and doublet  $\delta$  134.2 (5 marks)
- Q3. a) The most intense peak in the mass spectrum of 2,2-dimethylbutene occur at m/z 29 and 86. Account for the peaks and show the carbocations associated with the peaks (4 Marks)
  - b). i) Two isomeric compounds J and K with the same molecular formula  $C_6H_{12}O_2$  have the following <sup>1</sup>H NMR peaks.
    - J: δ 1.44 (9H, singlet) and 1.95 (3H, singlet)
    - K: δ 1.20 (9H, singlet) and 3.67 (3H, singlet)
    - ii) Compounds J and K have IR peaks at 1715 1750 cm<sup>-1</sup>
      Suggest the structures of J and K, and assign the chemical shift values to the hydrogen atoms in the respective structure.

- Q4. a) Listed below are some spectra and molecular formulae of some organic molecules. Propose with reasons, a structure that is consistent with each set of data.
  - MF:  $C_4H_8O$ ; IR: 1720 cm-1, <sup>1</sup>H NMR  $\delta$  1.05 (3H, t), 2.13 (3H,s) i)
  - MF:  $C_7H_8O$ ; IR: 3550 3200 cm-1, <sup>1</sup>H NMR  $\delta$  2.43 (1H, s), 4.58 ii) (2H,s) and 7.28 (5H,m) (10 marks)
  - b) Predict the main IR absorption peaks one would expect in the spectrum of benzamide. (5 marks)



- Benzamide
- Predict the <sup>13</sup>C and <sup>1</sup>H NMR peaks that one would expect in the spectrum c) of benzamide. Show your reasoning. (5 marks)
- Q5. a) The spectra provided below (Figure 6 a- d) were obtained when a molecules C<sub>7</sub>H<sub>8</sub>O was analyzed. Use the spectra to identify the molecule (Give your reasoning). Hint: the compound is aromatic. (10 marks)



## Figure 6a



Figure 6b

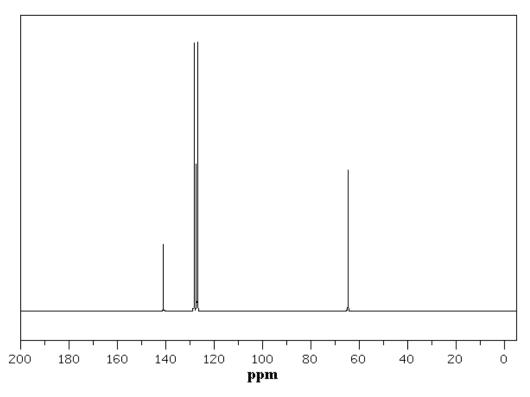



Figure 6c

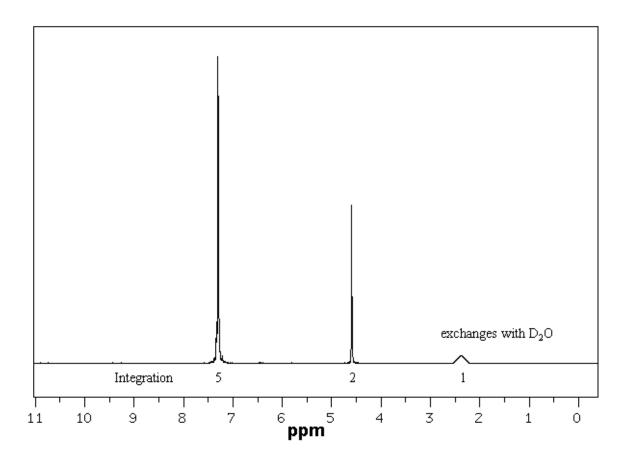



Figure 6d

- b) i) Draw block diagrams of a Mass Spectrophotometer (MS). (4 marks)
  - ii) Explain the function of each part of the MS and explain how it is used to obtain spectra (6 marks)

\*END\*