

Q1. Useful Information
$\mathrm{O}^{0} \mathrm{C}=273 \mathrm{k} \mathrm{kT}^{\mathrm{R}} / \mathrm{Fln} \mathrm{x}=0.0591 \log _{10} \mathrm{x}$ at 298 k
$1 \mathrm{~F}=96500 \mathrm{c} \mathrm{mol}^{-1} \mathrm{R}=8.314 \mathrm{~J} \mathrm{MOL}^{-1} \mathrm{~K}^{-1}$
a) A conductivity cell has a resistance of 845.5Ω when filled with a 0.015 MKcl solution and a resistance of 876Ω when filled eith a $0.005 \mathrm{M} \mathrm{CaCl}_{2}$ solution both at $25^{\circ} \mathrm{c}$. Given that the specific conductivity of Kcl solution at $25^{\circ} \mathrm{C}$ is $0.14114 \mathrm{SE} \Omega^{-1} M^{-1}$ calculate:
i The cell constant.
(3 marks)
ii The specific conductance of CaCl_{2} solution.
(3 marks)
b) i By means of a Hirtoff's cell describe how the transport numbers of H^{+} and Cl^{-}may be determined.
ii Perform the analysis of the anode and cathode compartments of the above cell when 1 F of electricity is passed through the electrolyte.
(6 marks)
c) Calculate the equilibrium constant for the reaction $2 \mathrm{Fe}^{3+}+31$
 $2 \mathrm{Fe}^{2+}+\mathrm{I}_{3}$ at 298 k .

Given

$$
\begin{aligned}
& 2 \mathrm{Fe}^{3+}+2 \mathrm{e}^{-}=2 \mathrm{Fe}^{2+} \mathrm{E}^{0}=0.771 \\
& \mathrm{I}_{3}^{-}+2 \mathrm{e}^{-}=3 \mathrm{I}^{-} \quad \mathrm{E}^{0}=0.536
\end{aligned}
$$

d) Calculate the ionic strength of a 0.15 m solution of $\mathrm{Ca}_{3}\left(\mathrm{pO}_{4}\right)_{2}$
(4 marks)

Q2. a) Consider the cell $\mathrm{Ag}^{-} / \mathrm{Ag}_{(\mathrm{a}+) 1} \mathrm{NO}_{3} / / \mathrm{Ag}_{(\mathrm{a}+) 2} / \mathrm{Ag}_{\text {Suppose the }}$ activities of the silver ions in the right and left hand electrodes are $(a+)_{2}$ and $(a+)_{1}$ and the corresponding potentials being E_{2} and E_{1} respectively. Derive an equation for the emf of the cell.
(12 marks)
b) Describe how the emf of an electrochemical cell is measured.
(8 marks)

Q3. a) The resistance R of an electrical conductor is proportional to its length (I) and inversely proportional to its cross section area (A) Show that $k=J / E$ and define all the terms.
(8 marks)
b) For the cell $\mathrm{pb} / \mathrm{pbCl}_{2(\mathrm{~s})} / \mathrm{kcl} / \mathrm{Agcl} / \mathrm{Ag}_{\text {The emf and }}$ its temperature coefficients at $25^{\circ} \mathrm{c}$ are 0.49002 v and a $0.000186 \mathrm{vk}^{-1}$ respectively.
i Write down the cell reaction.
ii Calculate $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ for the reaction at $25^{\circ} \mathrm{C}$.
(9 marks)
Q4. a) Briefly discuss the arrhenius theory of ionization and by using HAC show how the results were expressed in the ostwald dilution law.
(10 marks)
b) i Describe how iodine coulometer works.
ii Differentiate between electronic and electrolytic conductors. (4 marks)

Q5. a) Explain the origin of electrochemistry.
(6 marks)
b) Using the De-bye Huckel limiting equation calculate the mean activity coefficient and the mean activity of a 0.015 m solution of $\mathrm{ZnCl}_{2(\text { aq) }}\left(\mathrm{A}=0.51 \mathrm{~mol}^{-}\right.$ $1 / 2$ for aqueous solution.
(6 marks)
c) Using appropriate plots describe how the end points may be determined using conductivity measurement for a tiltration between
i Hcl and NaoH
ii $\mathrm{CH}_{3} \mathrm{COOH}$ and NaoH .
END

