

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAY – JULY 2015 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

CHEM 309: ELECTROCHEMISTRY

SCHOOL FOCUSED PROGRAMME

Date: JULY 2015Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Q1. Useful Information $O^{0}c = 273 \text{ k}^{\text{RT}}/\text{F} \ln x = 0.0591 \log_{10} x \text{ at } 298 \text{ k}$ $1 \text{ F} = 96500 \text{ c mol}^{-1} \text{ R} = 8.314 \text{J} \text{ MOL}^{-1} \text{ K}^{-1}$

a) A conductivity cell has a resistance of 845.5 Ω when filled with a 0.015MKcl solution and a resistance of 876 Ω when filled eith a 0.005M CaCl₂ solution both at 25^oc. Given that the specific conductivity of Kcl solution at 25^oc is 0.14114SE $\Omega^{-1}M^{-1}$ calculate:

i	The cell constant.	(3 marks)
ii	The specific conductance of $CaCl_2$ solution.	(3 marks)

- b) i By means of a Hirtoff's cell describe how the transport numbers of H⁺ and Cl⁻ may be determined. (8 marks)
 - ii Perform the analysis of the anode and cathode compartments of the above cell when 1 F of electricity is passed through the electrolyte.

(6 marks)

c) Calculate the equilibrium constant for the reaction $2Fe^{3+} + 3I$ $2Fe^{2+} + I_3$ at 298k.

Cuea/ACD/EXM/JANUARY – APRIL 2015 / CHEMISTRY

Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

Given $2Fe^{3+} + 2e^{-}$ $2Fe^{2+} E^{0} = 0.771$ $I_{3}^{-} + 2e^{-}$ $3I^{-} E^{0} = 0.536$

d) Calculate the ionic strength of a 0.15m solution of $Ca_3 (po_4)_2$ (4 marks)

- Q2. a) Consider the cell $Ag^{-/A}g_{(a+)1}NO_3 // Ag_{(a+)2} / Ag$ Suppose the activities of the silver ions in the right and left hand electrodes are $(a+)_2$ and $(a+)_1$ and the corresponding potentials being E_2 and E_1 respectively. Derive an equation for the emf of the cell. (12 marks)
 - b) Describe how the emf of an electrochemical cell is measured. (8 marks)
- Q3. a) The resistance R of an electrical conductor is proportional to its length (I) and inversely proportional to its cross section area (A) Show that k=J/E and define all the terms.
 (8 marks)
 - b) For the cell $pb/pbCl_{2(s)}/kcl/Agcl/Ag}$ The emf and its temperature coefficients at 25°c are 0.49002v and a 0.000186vk⁻¹ respectively.

		i	Write down the cell reaction.	(3 marks)
		ii	Calculate ΔG , ΔH and ΔS for the reaction at 25 ^o c.	(9 marks)
Q4.	a)		iefly discuss the arrhenius theory of ionization and by using H e results were expressed in the ostwald dilution law.	AC show how (10 marks)
	b)	i	Describe how iodine coulometer works.	(6 marks)
		ii	Differentiate between electronic and electrolytic conductors.	(4 marks)
Q5.	a)	E>	cplain the origin of electrochemistry.	(6 marks)
	b)	СС	sing the De-bye Huckel limiting equation calculate the mean a pefficient and the mean activity of a 0.015m solution of $ZnCl_{2(act)}$ for aqueous solution.	•
	c)		sing appropriate plots describe how the end points may be det sing conductivity measurement for a tiltration between	ermined

Cuea/ACD/EXM/JANUARY – APRIL 2015 / CHEMISTRY

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- i Hcl and NaoH
- ii $CH_3 COOH$ and NaoH.

(8 marks)

END

Cuea/ACD/EXM/JANUARY – APRIL 2015 / CHEMISTRY

Page 3

ISO 9001:2008 Certified by the Kenya Bureau of Standards