A. M. E. C. E. A
MAIN EXAMINATION
JANUARY - APRIL 2019 TRIMESTER
P.O. Box 62157
00200 Nairobi - KENYA
Telephone: 891601-6
-

FACULTY OF SCIENCE
DEPARTMENT OF NATURAL SCIENCE (CHEMISTRY)
REGULAR PROGRAMME

CHEM 201:PHYSICAL CHEMISTRY I

Date: APRIL 2019
Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Q1. a) Substances A and B are known to form a eutectic mixture. The melting point of the $A-B$ alloy is lowest when $X_{A}=0.6$. Both substances are less soluble at very high ratios. Sketch the Eutectic diagram for the A-B alloy mixture explaining its different sections.
(5 marks)
b) Calculate the thermal energy needed to raise the temperature of 25.0 g of iron from 201 K to 1067 K . (Specific heat capacity of iron is 0.45 $J^{\prime-1} \mathrm{~g}^{-1}$)
(5 marks)
c) If:
$\mathrm{CH}_{2} \mathrm{O}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{CH}_{4|g|}+\mathrm{O}_{2|g|} \Delta \mathrm{H}=+275.6 \mathrm{~kJ} \ldots 1$
$\mathrm{CH}_{2} \mathrm{O}_{(g)}+\mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Delta \mathrm{H}=-526.7 \mathrm{~kJ} \ldots 2$
$\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(g)} \Delta \mathrm{H}=44.0 \mathrm{~kJ} \ldots 3$
Calculate the ΔH for:
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \quad$ (5 marks)
d) Using the ideal gas law, calculate the mass of a 10.89 L sample of ammonia gas measured at standard conditions.
Hint: Use K units for temperature and atm. units for Pressure. ($R=0.0821 \mathrm{~L}$. atm. $/$ mol. K , mass number for $\mathrm{N}=14 ; \mathrm{H}=1$). (5 marks)
e) Substances A and B react in the following way:
$A+B \longrightarrow C+D$

The table below depicts the concentrations of the reactants and products at different temperatures:

Temp. (K)	207	273	387	498	567
Conc. of A (mg/l)	1.56	3.66	4.23	5.87	7.02
Conc. of B (mg/l)	2.12	4.01	5.93	6.67	7.45
Conc. of C (mg/l)	9.81	8.16	8.02	7.13	5.29
Conc. of D (mg/I)	10.11	9.04	8.65	7.63	5.33

Using the Van't Hoff equation graphically determine if the reaction is exothermic or endothermic in nature ($R=8.314 \mathrm{~J} / \mathrm{K} . \mathrm{mol}$.) (Use graph paper provided)
(5 marks)
f) Gas $A\left(T_{A}=125 \mathrm{~K}\right)$ and gas $B\left(T_{B}=501 \mathrm{~K}\right)$ contained in two compartments separated from their surroundings. Calculate the entropy change $(\Delta \mathrm{S})$ if the partition between the two compartments is removed and the two gases are allowed to mix $\left(\Delta U_{A}=7.8 \mathrm{KJ}\right)$
(5 marks)
Q2. a) Pt. and Ag form a peritectic alloy. The melting point of Ag is $920^{\circ} \mathrm{C}$ while that of Pt. is $1,750^{\circ} \mathrm{C}$. The peritectic temperature is $1,200^{\circ} \mathrm{C}$. Sketch the peritectic phase diagram of these two metals
(6marks)
b) A piston is used to reversibly compress 0.6 moles of an ideal gas from 121 ml to 56 ml at 300 K .
i) Calculate the PV work done on the gas
ii) If the gas then undergoes further adiabatic compression, the temperature increases by 17K. Assuming that its heat capacity at constant volume $\left(\mathrm{C}_{\mathrm{V}}\right)$ is $15 \mathrm{~J} \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$, calculate its change in internal energy $(\Delta U)(R=8.314 \mathrm{~J} / \mathrm{K}$. mol.)
(5 marks)
iii) Calculate the enthalpy change ($\Delta \mathrm{H}$) in the gas after the above two steps
(4 marks)
Q3. a) Use relevant examples to define the following terms:
i) Enthalpy of Reaction ($\Delta_{\mathrm{r}} \mathrm{H}$)
ii) Standard Enthalpy of Formation $\left(\Delta_{f} H^{o}\right.$ i
iii) Enthalpy of Combustion $\left(\Delta_{c} \mathrm{Hi}^{i}\right.$
b) Calculate the enthalpy change OF 0.15 moles of a substance experiencing a temperature change of 450 K if $\mathrm{C}_{\mathrm{v}, \mathrm{m}}=18 \mathrm{~J} / \mathrm{K} . \mathrm{mol} .(\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} . \mathrm{mol}$.$) .$
marks)
c) Using a diagram, explain the differences between the following thermodynamic processes:
i) Adiabatic Process
ii) Isochoric Process
iii) Isothermal Process
iv) Isobaric Process
d) Describe Dalton's Law of Partial Pressures

Q4. a) 0.75 moles of a material experiences a change in enthalpy $(\Delta \mathrm{H})$ of 12.35 $\mathrm{J} / \mathrm{mol}$. at 238 K .
i) Calculate the heat capacity at constant volume $\left(\mathrm{C}_{\mathrm{v}}\right)$ for the material ($R=8.314 \mathrm{~J} / \mathrm{K} . \mathrm{mol}$.)
(3 marks)
ii) Calculate the change in internal energy (ΔU) of the reaction marks)
b) Two similar metals of the same size and cross-sectional area are contacted to each other. Temperature of the hotter metal is 607 K and that of the colder metal is 78 K . Calculate the entropy change due to heat transfer after contact. ($C_{V}=0.871 \mathrm{~J} / \mathrm{g} . \mathrm{K}$)
(5 marks)
c) Using a relevant diagram, illustrate how real gases deviate from ideality
(5 marks)
d) Using relevant diagrams, describe the inverse lever rule
(4 marks)
Q5. a) Using a diagram, explain the Maxwell's distribution of gases at different temperatures
(4 marks)
b) Explain the applications of thermodynamics in:
i) Protein Folding
ii) Mineral Exploration
c) Describe the different types of thermodynamic systems
(6 marks)
d) Explain why at constant heat flow, a change of entropy is higher at low temperature than at high temperature
(4 marks)
END

