

Useful information
$R=0.0821, \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1}$ or $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{O}^{0} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}$

Q1. a) State the Boyle's and Charles law of gases and use them to derive the ideal gas equation.
b) State FOUR basic assumptions of the kinetic theory of gases. (4 marks)
c) How many litres of chlorine gas, Cl_{2} can be obtained at $40^{\circ} \mathrm{c}$ and 787 mmHg from 9.41 g of hydrogen chloride Hcl , according to the following equation.

$$
\begin{equation*}
2 \mathrm{KM}_{\mathrm{n}} \mathrm{O}_{4(\mathrm{~s})}+16 \mathrm{HCl}_{(\mathrm{aq})} \longrightarrow 2 \mathrm{KCl}_{(\mathrm{aq})}+\mathrm{Mncl}_{(\mathrm{aq})}+5 \mathrm{Cl}_{2(\mathrm{~g})}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \tag{6marks}
\end{equation*}
$$

d) 100 ml of oxygen at 1.75 atm and 200 ml nitrogen at 0.6 atm are passed into a vessel whose capacity is 500 ml . Calculate the total pressure in the vessel at the same temperature.
(4 marks)
e) $\quad 0.250 \mathrm{~mol} \mathrm{SO}_{2}$ and $0.300 \mathrm{~mol} \mathrm{O}_{2(\mathrm{~g})}$ react at 500 K in a 2.01 vessel to form $0.08 \mathrm{M} \mathrm{SO}_{3(\mathrm{~g})}$ at equilibrium. Determine K_{c} at 500 K for the reaction.
$2 \mathrm{SO}_{2(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$
(6 marks)
f) State the Graham's law of diffusion and give a relation between the times (t_{1} and t_{2}) of diffusion of two gases of masses M_{1} and M_{2} respectively to diffuse through a hole of a given temperature.
(4 marks)

Q2. a) i Differentiate between real gases and ideal gases.
(2 marks)
ii Briefly explain the pressure and volume with regard to modification of ideal gas reaction.
(6 marks)
b) i Using ideal gas equation ($\mathrm{PV}=\mathrm{nRT}$) derive the real gas equation.
(6 marks)
ii Determine the difference between ideal pressure and real pressure of a sample of 1.00 mol ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$ that has a volume of 22.41 at $0^{\circ} \mathrm{c}$ given that the van der waals constants a and b for $\mathrm{C}_{2} \mathrm{H}_{6}$ are $5.570 \mathrm{l}^{2} \mathrm{~atm}\left(\mathrm{~mol}^{-1}\right)^{2}$ and $0.0650 \mathrm{I} \mathrm{mol}^{-1}$ respectively.
(6 marks)

Q3.
a) i Define chemical equilibrium
(2 marks)
ii Define Le Chatelier's principle.
(2 marks)
b) Using examples, explain THREE factors that affect a chemical equilibrium.
(9 marks)
c) The following equilibrium process has been studied at $230^{\circ} \mathrm{C}$ $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$ in one experiment the concentrations of the reating species at equilibrium, are found to be $[\mathrm{NO}]=0.0542 \mathrm{M}\left[\mathrm{O}_{2}\right]=$ 0.127 M and $\left[\mathrm{NO}_{2}\right]=15.5 \mathrm{M}$. Calculate the equilibrium constant $\left(\mathrm{K}_{\mathrm{C}}\right)$ of the reaction at $230^{\circ} \mathrm{C}$.
(3 marks)
d) For the equilibrium $2 \mathrm{SO}_{3(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$ at 1000Ktemperature Kc has the value of 4.07×10^{-3}. Calculate the value of Kp. (4 marks)

Q4. a) i Define a buffer.
ii List TWO importance of a buffered solution.
iii \quad Calculate the pH of a buffer made from $0.24 \mathrm{M} \mathrm{NH}_{3}$ and $0.20 \mathrm{M} \mathrm{NH} 4 \mathrm{Cl} \mathrm{K}_{\mathrm{b}}=$ 1.8×10^{-5}
iv Suppose 0.001 mol NaOH is added to 1.0 L of the solution in (ii) above what will be the pH of the resulting solution?
b) i Differentiate between a strong base and a weak base. (2 marks)
ii \quad Calculate pH of $0.01 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}\left(\mathrm{Ba} .(\mathrm{OH})_{2}\right.$ is a strong base.
(4 marks)

Q5. a) Consider the reaction for the manufacture of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ by reaction of carbon monoxide with hydrogen in presence of $\mathrm{Z}_{\mathrm{n}} \mathrm{O} / \mathrm{Cr}_{2} \mathrm{O}_{3}$ catalyst as shown below:

$$
\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \stackrel{\mathrm{Z}_{\mathrm{n}} \mathrm{O} / \mathrm{Cr}_{2} \mathrm{O}_{3}}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})} \Delta \mathrm{H}^{0}=-91 \mathrm{kj}
$$

Explain how the changes in the following parameters affects the yield of methanol:
i Temperature is increased
(2 marks)
ii Volume is deceased for $\mathrm{CH}_{3} \mathrm{OH}$
(2 marks)
iii Helium is added
(2 marks)
iv $\quad \mathrm{CO}$ is added.
(2 marks)
v Catalyst is removed.
(2 marks)
b) i Write the equilibrium constant expression the equation in (a) above.
(2 marks)
ii Briefly explain the common ion effect.
iii Given that $\mathrm{K}_{\text {sp }}$ for AgCL is $2.8 \times 10^{-1} \mathrm{M}^{2}$ determine the solubility of $\mathrm{AgCl}_{(s)}$ in $0.1 \mathrm{M} \mathrm{AgNO}_{3}$
(3 marks)
c) The solubility of CuBr_{2} is $2.0 \times 10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. Calculate the K_{sp} value of CuBr_{2}

