THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAIN EXAMINATION

MAY – JULY 2015 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

CHEM 102: PHYSICAL CHEMISTRY I

SCHOOL FOCUSED PROGRAMME

Date: JULY 2015 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Useful information

R = 0.0821, L atm mol^{-1} or 8.314J mol^{-1} k^{-1}

 $O^{0}C = 273K$

1 atm = 760 mmHg

- Q1. a) State the Boyle's and Charles law of gases and use them to derive the ideal gas equation. (6 marks)
 - b) State FOUR basic assumptions of the kinetic theory of gases. (4 marks)
 - c) How many litres of chlorine gas, Cl₂ can be obtained at 40⁰c and 787 mmHg from 9.41g of hydrogen chloride Hcl, according to the following equation.

$$2KM_nO_{4(s)} + 16HCI_{(aq)}$$
 $2KCI_{(aq)} + MncI_{(aq)} + 5CI_{2(g)} + 8H_2O_{(l)}$ (6 marks)

d) 100ml of oxygen at 1.75 atm and 200 ml nitrogen at 0.6 atm are passed into a vessel whose capacity is 500ml. Calculate the total pressure in the vessel at the same temperature. (4 marks)

- f) State the Graham's law of diffusion and give a relation between the times (t₁ and t₂) of diffusion of two gases of masses M₁ and M₂ respectively to diffuse through a hole of a given temperature. (4 marks)
- Q2. a) i Differentiate between real gases and ideal gases. (2 marks)
 - ii Briefly explain the pressure and volume with regard to modification of ideal gas reaction. (6 marks)
 - b) i Using ideal gas equation (PV = nRT) derive the real gas equation. (6 marks)
 - Determine the difference between ideal pressure and real pressure of a sample of 1.00 mol ethane, C_2H_6 that has a volume of 22.4l at 0^0 c given that the van der waals constants a and b for C_2H_6 are $5.570l^2$ atm $(mol^{-1})^2$ and $0.0650 \ l mol^{-1}$ respectively. **(6 marks)**
- Q3. a) i Define chemical equilibrium (2 marks)
 - ii Define Le Chatelier's principle. (2 marks)
 - b) Using examples, explain THREE factors that affect a chemical equilibrium. (9 marks)
 - The following equilibrium process has been studied at 230° c $2NO_{(g)} + O_{2(g)} = 2NO_{2(g)}$ in one experiment the concentrations of the reating species at equilibrium, are found to be [NO] = 0.0542M [O₂] = 0.127M and [NO₂] = 15.5M. Calculate the equilibrium constant (K_C) of the reaction at 230° c. (3 marks)
 - d) For the equilibrium $2SO_{3(g)}$ $2SO_{2(g)} + O_{2(g)}$ at 1000Ktemperature Kc has the value of 4.07 x 10^{-3} . Calculate the value of Kp. (4 marks)
- Q4. a) i Define a buffer. (2 marks)

- ii List TWO importance of a buffered solution. (2 marks)
- iii Calculate the pH of a buffer made from 0.24M NH₃ and 0.20M NH₄Cl K_b = 1.8×10^{-5} (5 marks)
- iv Suppose 0.001 mol NaOH is added to 1.0L of the solution in (ii) above what will be the pH of the resulting solution? (5 marks)
- b) i Differentiate between a strong base and a weak base. (2 marks)
 - ii Calculate pH of 0.01M Ba (OH)₂ (Ba. (OH)₂ is a strong base. (4 marks)
- Q5. a) Consider the reaction for the manufacture of methanol (CH₃OH) by reaction of carbon monoxide with hydrogen in presence of Z_nO/ Cr₂O₃ catalyst as shown below:

$$Z_nO/Cr_2O_3$$
 $CO_{(g)} + 2H_{2(g)}$
 $CH_3OH_{(g)} \Delta H^0 = -91kj$

Explain how the changes in the following parameters affects the yield of methanol:

i	Temperature is increased	(2 marks)
ii	Volume is deceased for CH₃OH	(2 marks)
iii	Helium is added	(2 marks)
iv	CO is added.	(2 marks)
٧	Catalyst is removed.	(2 marks)

- b) i Write the equilibrium constant expression the equation in (a) above.
 - (2 marks)
 - ii Briefly explain the common ion effect. (2 marks)
 - iii Given that K_{sp} for AgCL is 2.8 x 10⁻¹ M^2 determine the solubility of AgCl_(s) in 0.1M AgNO₃ (3 marks)
- c) The solubility of $CuBr_2$ is 2.0 $x10^{-4}$ M at 25^0 c. Calculate the K_{sp} value of $CuBr_2$ (3 marks)