A. M. E. C. E. A P.O. Box 62157 00200 Nairobi - KENYA
Telephone: 891601-6
SEPTEMBER - DECEMBER 2019 TRIMESTER
FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

REGULAR PROGRAMME

PHY 308: INTRODUCTION TO SOLID STATE PHYSICS

Date: DECEMBER $2019 \quad$ Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and ANY other TWO Questions

Q1. a) What do you understand by crystalline and amorphous solids? marks)
b) Define packing fraction and find the value for a simple cubic structure
marks)
c) Write the reciprocal lattice if $\vec{a}, \vec{b}, \vec{c}$ are the basis vectors of a cubic crystal marks)
d) State the Dulong-Petit law and give its importance in solids marks)
e) Considering the reciprocal lattice vector G for two parallel planes of atoms, derive the Braggs condition $2 d \sin \theta=\lambda$
(4 marks)
f) Show that the primitive of a B.C.C lattice is an F.C.C lattice (3 marks)
g) Sketch the (112), (111) and (101) planes in simple cubic cell. marks)
h) Obtain the relationship between the atomic radius (r) and the lattice constant (a) for the simple cubic, the face centered and the body centered cubic structures.
marks)

Q2. a) Discuss why the Laue's method of X-ray diffraction is not preferred in determining the structure of a crystal
(4 marks)
b) Describe the powder method of x-ray diffraction and why it is the most preferred.
(6 marks)
c) Of what importance are Miller indices in the rotating crystal method of X ray diffraction
marks)
d) Discuss the free electron model and its failures
marks)

Q3. a) Proof that the length of reciprocal vector $d_{h k l}$ is equal to the reciprocal of the interplanar spacing of the direct lattice.
(7 marks)
b) Consider a triangular plane in the reciprocal lattice in 3D with point O being the origin. A point P on the plane is chosen such that $O P$ is perpendicular to the plane. Proof that the reciprocal vector is perpendicular to the plane.
(7 marks)
c) Show how the average energy in a Fermi gas can be expressed in terms of $E f_{0}$
(6 marks)

Q4. a) Show that $\omega= \pm \sqrt{\frac{4 \beta}{m} \sin ^{2}\left(\frac{k a}{2}\right)}$
for a linear monoatomic lattice.

marks)

b) Explain the causes of lattice vibration and explain the curve for the linear monoatomic lattice
(6 marks)
c) Give a detailed description of optical and acoustical frequency of vibration of a
a linear
diatomic
lattice
marks)

Q5. a) What is the physical meaning of band effective mass of an electron?
(2 marks)
b) Gallium arsenide has a dielectric constant $\varepsilon_{r}=13.13$, an effective mass $m_{e}=0.07 \mathrm{~m}_{0}$, and effective hole mass $\mathrm{m}_{\mathrm{h}}=0.09 \mathrm{~m}_{0}$. Calculate the donor and acceptor ionization energies, the Bohr orbit radius of a bound donor electron and a bound acceptor hole.
(6 marks)
c) Basing on the Fermi-Dirac statistics, show that the probability of finding electrons anywhere in an energy level is given by, $n=\frac{1}{3 \pi} \frac{\left(\frac{2 m}{\hbar^{2}} E f_{0}\right)^{3}}{2}$
(6 marks)
d) Discuss the Weidmann Franz law and sketch variation of thermal conductivity in metals verses temperature
(6 marks)
END Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 4 ISO 9001:2015 Certified by the Kenya Bureau of Standards

