A. M. E. C. E. A P.o. box 62157 00200 Nairobi - KENYA
Telephone: 891601-6
SEPTEMBER - DECEMBER 2019 TRIMESTER
FACULTY OF SCIENCE
\section*{DEPARTMENT OF PHYSICS}
REGULAR PROGRAMME

PHY 301: QUANTUM MECHANICS I
Date: DECEMBER 2019
Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and ANY other TWO Questions

CONSTANTS

$M_{e}=9.1 \times 10^{-31} \mathrm{Kg}$

$$
\begin{gathered}
h=6.624 \times 10^{-34} \\
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\
e=1.6 \times 10^{-19} \mathrm{C} \\
R_{H}=1.09678 \times 10^{7} \mathrm{~m}^{-1} \\
R_{H e}=1.09722 \times 10^{-7} \mathrm{~m}^{-1}
\end{gathered}
$$

Q1. (a) Explain the following terms:
(i) Energy quantization of atoms
(ii) Photoelectric effect
(iii) Compton effect
(iv) Heisenberg uncertainity principle.
(6marks)
(b) Distinguish between Paschen, Lymann and Balmer spectral series.
(3marks)
(c) (i) Calculate the radius of the first orbit in the Hydrogen atom ($z=1$)
(3marks)
(ii) Also the velocity of the electron on the first orbit of the Hydrogen
(d) Calculate the De Broglie wavelength of:
(3marks)
(i) a dust particle of mass $1.0 \times 10^{-9} \mathrm{Kg}$ driffting with a velocity of $2.0 \mathrm{~cm} / \mathrm{s}$
(ii) An electron whose kinetic energy is 120 eV
(7marks)
(e) (i) What do you understand by the term 'Black body radiation'?
(2marks)
(ii) Derive the Planck's radiation law
(6marks)

Q2. (a) (i) Calculate the energies of the electron (in Hydrogen atom) on the $1^{\text {st }}$, $2^{\text {nd }}$ and $3^{\text {rd }}$ orbits in Electron volts
(4marks)
(ii) Calculate the energy required to excite the Hydrogen atom from the ground state ($\mathrm{n}=1$)
To the first excited state.
(4marks)
(b) The wavelength of the Balmer H_{α} line is $6563 \AA$, Calculate the wavelength of the H_{β} line ($2^{\text {nd }}$ line) of the Balmer series.
(5marks)
(c) Calculate then energy in eV of the photoelectrons from the surface of a tungsten emitter When it is irradiated with light of wavelength
1800Å ,
Given that the threshold wavelength
For photoelectric emission in this case is $2300 \AA$.
(7marks)

Q3. (a) The size of an atom is approximately $10^{-8} \mathrm{~cm}$. To locate an electron within the atom, one should use Electromagnetic radiation of the wavelength no longer than $10^{-9} \mathrm{~cm}$.
(i) What is the energy of a photon with such a wavelength in electron volts.
(ii) What is the uncertainity in the electron's momentum if we are certain about its position by $10^{-9} \mathrm{~cm}$?
(10marks)
(b) The Rydbergs constant for Hydrogen is $1.09678 \times 10^{7} \mathrm{~m}^{-1}$ and for ionized Helium is $1.09722 \times 10^{7} \mathrm{~m}^{-1}$. Calculate the ratio of mass of the proton
to
mass of that of electron assuming the helium nucleus to be four times the
(10marks)

Q4. (a) State the Bohrs postulate for the theory of the Hydrogen atom.
(5marks)
(b) Derive an expression for the energy of this atom when the electron is in the nth orbit. What is the binding energy?
(9marks)
(c) What is the energy, linear momentum and the wavelength of a photon emitted by Hydrogen atom when an electron makes a transition from $\mathrm{n}=2$ to $\mathrm{n}=1$.
(6marks)

Q5. (a) An X-ray of wavelength $0.2400 \mathrm{~nm}(2.4 \AA$) are Compton - scattered and the scattered beam is observed at 60° relative to the incident beam. Find :
(i) The wavelength of the scattered X-rays
(ii) The energy of the scattered X - ray photons
(iii) The Kinetic energy of the recoiling electrons
(iv) The direction of travelling of the scattered electrons
(8marks)
(b) Consider a particle with energy $\mathrm{E}=\frac{p_{x}^{2}}{2 m}$ moving in one dimension ($\mathrm{x}-$ direction). The Uncertainity on its location is Δx. Show that if $\Delta x \Delta p_{x}=\frac{\hbar}{2}, \quad$ then $\Delta E \Delta t \geq \frac{\hbar}{2}$.
(6marks)
(c) (i) If the De Broglie wavelength of an electron is $9.0 \times 10^{-10} \mathrm{~m}$. Find its Kinetic energy
(3marks)
(ii) Calculate the De Broglie wavelength of a beam of electrons whose kinetic energy is 100 eV
(3marks)
END

