A. M. E. C. E. A P.O. Box 62157 00200 Nairobi - KENYA
Telephone: 891601-6
SEPTEMBER - DECEMBER 2019 TRIMESTER
FACULTY OF SCIENCE
\section*{DEPARTMENT OF PHYSICS}
REGULAR PROGRAMME
PHY 401: QUANTUM MECHANICS II

Date: DECEMBER $2019 \quad$ Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and ANY other TWO Questions

Speed of light in the vacuum, c	$=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck's constant, h	$=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

Q1. i) Write down the time-dependent Schrodinger equation for the wave function $\quad \psi(\mathrm{x}, \mathrm{t})$ of a particle of mass m moving in one dimension x in the \quad potential $\mathrm{V}(\mathrm{x})$. Also write down the time-independent Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 1

Schrodinger mass m moving in one
equation for the wave function $\psi(x)$ of a particle of dimension x in a potential $\mathrm{V}(\mathrm{x})$.
(4 marks)
ii) A particle on a line has a normalized wave function $\psi(x)$. Write down a formula for the expectation value of x^{2}.

(3 marks)

iii) Explain the physical meaning of the Heisenberg uncertainty relation. (3 marks)
iv) Explain what is meant by the orthogonality of two wavefunctions $\psi_{1}(x)$ and $\psi_{2}(x)$, in the quantum mechanics of a particle on a line $-\infty<x<\infty$
(3 marks)
v) The momentum operator is $\quad \partial x \quad$ Calculate the momentum of a particle described by the wave function $\quad \psi_{k}|x|=e^{i k x}$.
(3 marks)
vi) For a one - dimensional system, the momentum operator \hat{p} is defined in (v) above and the position operator, $\hat{X}=x$. Show that [\hat{p}, \hat{X}] $=-i \hbar \quad$ Can momentum and position of a given state be measured simultaneously
?
vii) Write down the normalization condition for the wave function $\psi \quad(x)$ of a particle which can move in the interval -a ${ }^{i}{ }^{i}$ wave function $\psi(\varphi)=A e^{-i k \varphi}$ for $0<\varphi<\pi$.
normalize the

(3 marks)

viii) What is parity, and when would you expect a wave function to have a definite parity?
(2 marks)
ix) How does the energy of the $n^{\text {th }}$ bound state for a particle confined by a finite quantum well compare to that of the same state in the infinite quantum well? Give reasons for your answers.

(2 marks)

x) Two copper conducting wires of uniform cross-sectional area are separated by an oxide layer of copper oxide. Treat the oxide layer
as a coefficient is 5.00 nm .
square barrier of height 10 eV and estimate the transmission for penetration by 7 eV electrons if the layer thickness

(6 marks)

For $E<V_{0} ; T=\frac{1}{\left[1+\frac{V_{0}^{2} \sinh ^{2} \beta a}{4 E\left(V_{0}-E\right)}\right]}$; For $E>V_{0} ; T=\frac{1}{\left[1+\frac{V_{0}^{2} \sinh ^{2} \beta a}{4 E\left(E-V_{0}\right)}\right]}$
where $\quad \beta^{2}=\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}$
Q2. The spin-orbit coupling of an electron of an angular momentum / and spin $s=1 / 2$ is described by the Hamiltonian $H=\lambda \cdot \bullet s$, where λ is the spin-orbit coupling parameter.
a) Write down the matrix H and diagonalize it to show that the state is split into two states with total angular momentum $j=/ \pm 1 / 2$. Find the energies. marks)
b) Show that the eigenenergies can be determined using the relation $j=/+s$
c) Obtain the relativistic Hamiltonian for a Hydrogen atom starting from classical physics

Q3. a) Formulate the Hartree-Fock approximation in electronic structure theory (6 marks)
b) Derive the Hartree-Fock electronic energy in terms of the density matrix and the density for an electron wave function.
(5 marks)
c) What is the Hohenberg-Kohn observation for the basis of density functional theory?
(4 marks)
d) State the three fundamentals of properties of a Born-Oppenheimer model
e) What do you understand by LCAO approximation?

Q4. A particle of mass m moves along the x-axis, with a potential energy $U(x)=\frac{k x^{2}}{2}$
(i) Write down the time-independent Schrodinger equation for this particle.
(ii) The ground state wavefunction is of the form $\psi_{1}(x)=A_{0} e^{-a x^{2}}$. The parameter a is a function of $\mathrm{k} ; \mathrm{m} ; \hbar$ and A_{0} is a normalisation constant. Calculate a and obtain the energy E of this state.
For parts (iii) and (iv) you may use the integral $\int_{0}^{\infty} e^{-a x^{2}}=\frac{1}{2} \sqrt{\frac{\pi}{a}}$
(iii) Determine the expectation values of x^{2} and of the kinetic energy in the ground state.
(6 marks)
(iv) The first excited state is $\psi_{1}(x)=A_{1} x e^{-a x^{2}}$. Calculate the expectation value of x^{2} and the kinetic energy in the state $\psi_{1}|x|$.
(6 marks)
Q5. a) An electron is confined to move in the $x y$ plane in a rectangle whose dimensions are L_{x} and L_{y}. That is, the electron is trapped in a 2D potential energies of the The allowed well having lengths L_{x} ans L_{y}. In this situation, the allowed electron depend on two quantum numbers nx and ny. energies are given by,
$E=h^{2} / 8 m_{e}\left(n_{x}{ }^{2} / L_{x}^{2}+n_{y}^{2} / L_{y}^{2}\right)$.
i) Assuming that $\mathrm{Lx}=\mathrm{L} y=\mathrm{L}$, find the energies of the lowest four energy levels for the electron.
(8 marks)
ii)
iii) Construct an energy level diagram for the electron and determine the energy difference between the second and the ground state (3 marks)
b) By considering angular momentum in spherical coordinates and choosing the common eigen functions of $\left(L^{2}, L_{z}\right)$ for $L=1$ as our basis, show
that for

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -h
\end{array}\right] \quad \mathrm{L}_{\mathrm{z}}=\mathrm{h} 00
$$

(9 marks)

END

Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 5
ISO 9001:2015 Certified by the Kenya Bureau of Standards

