THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157

00200 Nairobi - KENYA

MAIN EXAMINATION

Telephone: 891601-6

SEPTEMBER - DECEMBER 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

PART-TIME PROGRAMME

PHY 203: THERMODYNAMICS II

Dat	e: DE	ECEMBER 2019	Duration: 2 Hours
INS	TRUC	CTIONS: Answer Question	ONE and ANY other TWO Questions
Q1.	a)	Define the following terms a	as used in thermodynamics
	,	(i) Thermodynamic conta	
		(ii) Thermodynamic equil	
		(iii) Thermodynamic proc	ess (1 mark)
		(iv) Thermodynamic co-o	dinates (1 mark)
		(v) Thermodynamic syste	em (1 mark)
		(vi) Thermodynamic bour	dary (1 mark)
	b)	Write down the four thermo	dynamics potentials in differential form (4 marks)
	c)	(i) Define Gibb's free en (ii) Show that for a reve Δ G = 0	nergy (1 mark) rsible isothermal and isobaric process, (4 marks)
	d)	State the following	(i marke)
	/	(i) Zeroth law of thermo	dynamics (1 mark)
		(ii) first law of thermody	•
	e)	Show that it is true that for	an isothermal process
	,	(i) $\Delta U = 0$	(3 marks)
		(ii) $\Delta Q = \Delta W$	(3 marks)
	f)	·	heat capacities c_p and c_v of oxygen given
		that the ratio of molar heat	capacities $\gamma = 1.4$ (4 marks)

	g)	reversibly from 0° C to 100° C given that the specific heat ca water is 4200 J/kg			
Q2.	a)	Derive the Maxwell's thermodynamics relations from the thermodynamic potentials	(12 marks)		
	b)	Derive the Claussius - Clapeyron equation	(8 marks)		
Q3.	Q3. a) A liquid of mass m and specific heat capacity C _p at tem mixed with an equal amount of the same liquid at a ten system is thermally insulated. Find the total entropy an it is always positive		ture T_2 . The		
	b)	Show that for a Carnot cycle, the ratio of the heat supplied Cheat rejected Q_{C} is the ratio of their absolute temperature T_{H} respectively			
Q4.	a)	Show that the equation of a reversible adiabatic is given by	ΓV ^{γ-1} (10 marks)		
	b)	A Carnot cycle operates between 200° C and 1200° C. (i) calculate its efficiency	(4 marks)		
		Calculate its coefficient of performance if it operates as a (ii) refrigerator (iii) heat pump	(3 marks) (3 marks)		
Q5.	a)	Given that U = U(P, T) and V = V(P, T), show that the specific capacity at constant pressure can be expressed as $C_P = \left(\frac{\partial H}{\partial T}\right)_P$	c heat (10 marks)		
	b)	Using Maxwell's first relation and any other appropriate relat and functions derive, the first	ions		
		(i) energy relation (ii) Tds equation	(5 marks) (5 marks)		
END					