

```
I (430)}10\mathrm{ to excess 3 - code
II (101011011010)}\mp@subsup{2}{2}{\mathrm{ to gray code}
III 011011100011 in gray code to binary
j) Give the MAXTERM notation of the following function. \(f=a b+a^{\prime} b c^{\prime}+a^{\prime} c\)
(3 marks)

Q2. a) A bulb in a staircases has two switches, one switch being at the ground floor and the other one at the first floor. The bulb can be turned ON and also can be turned OFF by and one of the switches irrespective of the state of the other switch. The logic of switching of the bulb resembles
(5 marks)
b) A comparator circuit for a 2 bit binary numbers \(X=X 1 X 0\) and \(Y=Y 1 Y 0\) is to be designed. The outputs are \(A, B\) and \(C\) where \(A\) is 1 if \(X>Y, B\) is 1 if \(X=Y\) and \(C\) is 1 if \(X<Y\). Construct a truth table for the 3 outputs and determine their function as sum of minterms
(10 marks)
c) Using minterms, show that
\[
\begin{equation*}
\bar{a} \cdot c+\bar{b} \cdot \bar{c}+a \cdot b=\bar{a} \cdot \bar{b}+b \cdot c+a \cdot \bar{c} \tag{5marks}
\end{equation*}
\]

Q3 a) In the Boolean algebra, verify using the truth table that \(\bar{X} . \bar{Y} . Z+(\overline{Y+Z}) . X+\overline{X+Y+Z+X} \bar{Y} . Z+X . \bar{Y} . \bar{Z}=\bar{Y}\) (7 marks)
b) Boolean function \(f\) of two variables \(X\) and \(Y\) is defined as follows:
\[
f(0,0)=f(0,1)=f(1,1)=1 ; f(1,0)=0
\]

Assuming complements of \(X\) and \(Y\) are not available, a minimum cost solution for realizing using only 2-input NOR gates and 2-input OR gates (each having unit cost). Determine the total cost.
(7 marks)
c) Simplify the expression below using a Karnaugh map
\[
\begin{equation*}
f=\bar{a} \cdot b \cdot \bar{d}+b \cdot c \cdot d+\bar{a} \cdot b \cdot \bar{c} \cdot d+c \cdot d \tag{6marks}
\end{equation*}
\]

Q4. a) Consider the function
\[
F=a b+c d
\]

Build using only three NAND gates.
b) (i) Convert (78) 10 \(_{10}\) the 8-bit 2' complement binary representation.
(2 marks)
(ii) Convert A 3 H to its octal equivalence
(i) Convert the unsigned number \((1111101)_{2}\) to hexadecimal
(iv) Convert (78) \({ }_{10}\) the 8-bit 2' complement binary representation.
(v) Convert (4096) \()_{10}\) into Binary coded decimal
c) Draw the logic symbol, diagram and truth table of a full adder illustrating sum output and carry output

Q5.
a) Distinguish between combinational and sequential circuit
(2 marks)
b) (i) Draw a combinational logic circuit for
\[
\begin{equation*}
X=\overline{(\bar{A} \bar{B} \bar{C})} C+\overline{\bar{A}} \bar{B} \bar{C}+D \tag{3marks}
\end{equation*}
\]
(ii) Determine the output of the circuit
(iii) Show that a simplified circuit is a 4 - input OR gate
c) Consider a 4-variable equation
\(F(A, B, C, D)=\sum m(1,2,4,6,8,9,10,14)\)
Draw a logic circuit using Karnaugh map
*END*```

