
(6marks)
Q2. (a) Two tiny conducting balls of identical mass m and identical charge hang from nonconducting threads of lengthl. Each ball forms an angle θ
with
$r^{3}=\frac{q^{2} l}{2 \pi \varepsilon_{0} m g}$
(i) Show that, at equilibrium, the separation between the balls is
(8marks)
(ii) If If $\mathrm{l}=1.2 \times 10^{2} \mathrm{~cm} \wedge \mathrm{~m}=1.0 \times 10^{2} \mathrm{~g} \wedge r=5.0 \mathrm{~cm}$, what is q ?
(5marks)
(b) A transformer used to step down ac mains from 240 V to the 12 V ac needed to operate a doorbell has a 1000 turns in the primary coil.
(i) How many turns are there in the secondary?
(3marks)
(ii) If the resistance introduced in the secondary circuit when the bell is pushed is 20Ω, what are the r.m.s currents in the primary and secondary coils assuming the transformer is 95% efficient?
(4marks)
Q3. a) State Gauss's law for
(i) Electrostatics
(2marks
(ii) Magnetism
(2marks)
b) An inductor of 30.0 H and a resistor of 6.00Ω are connected in series to a battery of 12.0 V .
(i) Draw the circuit diagram
(2marks)
(ii) Find the time constant of the circuit

(4marks)

(iii) The switch is closed at $t=0$. Calculate the current in the circuit at $t=2.00 \mathrm{~ms}$
(4marks)
c) A coil consists of 200 turns of wire. Each turn is a square of side 18 cm , and a uniform magnetic field directed perpendicular to the plane of the coil is turned on. If the field changes from $0<0.50 T \in 0.80 \mathrm{~s}$, what is the magnitude of the induced emf in the coil while the field is changing?

(6marks)

Q4. A series AC circuit consists of three components: an EMF source with $\varepsilon=V_{0} \sin \omega t$, where $V_{0}=110 \mathrm{~V}$, a 50 mH inductor, a $50 \mu \mathrm{~F}$ capacitor, and a 20Ω resistor.
(a) Draw a circuit diagram for this circuit.
(5marks)
(b) What is the impedance for this circuit?
(5marks)
(c) Draw the phasor diagram for the circuit.

(5marks)

(d) At what frequency ω will the power dissipated in the resistor be the largest?

(5marks)

Q5. a) An electron in a television picture tube moves toward the front of the tube with a speed of $8 \times 10^{6} \mathrm{~ms}^{-1}$ along the x - axis. If there is a magnetic
field of $0.025 T$ directed at an angle of 60° to the X axis and lying in the XY plane,
(i) Calculate the magnetic force on the electron
(3marks)
(ii) Find a vector expression for the magnetic force on the electron
(7marks)
(b) In order to measure the magnitude of a uniform magnetic field, electrons are accelerated from rest through a potential difference of 350V. Due to the magnetic force exerted on them, the electrons travel in a curved path of radius 7.5 cm . If the magnetic field is perpendicular to them,
(i) What is the magnitude of the field
(5marks)
(ii) What is the angular speed of the electrons?
(5marks)
END Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 4 ISO 9001:2015 Certified by the Kenya Bureau of Standards

