
a) Show that the equation of a reversible adiabatic is given by pV^{γ}
(10 marks)
b) A Carnot cycle operates between $200^{\circ} \mathrm{C}$ and $1200^{\circ} \mathrm{C}$.
(i) calculate its efficiency
(4 marks)
Calculate its coefficient of performance if it operates as a
(ii) refrigerator
(3 marks)
(iii) heat pump
(3 marks)

Q5 a) Given that $U=U(P, T)$ and $V=V(P, T)$, show that the specific heat capacity at constant pressure can be expressed as

$$
\begin{equation*}
c_{P}=\left(\frac{\partial H}{\partial T}\right)_{P} \tag{10marks}
\end{equation*}
$$

b) Determine the increase in entropy of solid magnesium when the temperature is increased from 300 K to 800 K at atmospheric pressure.
The heat capacity is given by the relation

$$
C_{P}=26.04+5.586 \times 10^{-3} \mathrm{~T}+28.476 \times 10^{4} \mathrm{~T}^{-2}
$$

Where C_{P} is in $\mathrm{J} / \mathrm{molK}$ and temperature in K
(10 marks)
END

