THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

00

MAIN EXAMINATION

00200 Nairobi - KENYA

P.O. Box 62157

Telephone: 891601-6

SEPTEMBER – DECEMBER 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

REGULAR PROGRAMME

PHY 203: THERMODYNAMICS II

Date: DECEMBER 2019	Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and ANY	other TWO Questions

Q1	a) b)	 (ii) isentropic and adiabatic processes (iii) isothermal and isochoric processes Write down the four thermodynamics potentials in differential 	(2 marks) (2 marks) (2 marks) form (4 marks)
	c)	(i) Define Gibb's free energy (ii) Show that for a reversible isothermal and isobaric proc $\Delta G = 0$	(1 mark) ess, (4 marks)
	d)		(1 mark) (1 mark)
	e)		(3 marks) (3 marks)
	f)	Calculate the molar specific heat capacities c_p and c_v of oxyge that the ratio of molar heat capacities $\gamma = 1.4$	en given (4 marks)
	g)	Calculate the change in entropy of 5 kg of water when it is here reversibly from 0° C to 100° C given that the specific heat cap water is 4200 J/kg	

Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 1

ISO 9001:2015 Certified by the Kenya Bureau of Standards

Q2	a)	Derive the Maxwell's thermodynamics relations from the thermodynamic potentials	(12 marks)	
	b)	Derive the Claussius - Clapeyron equation	(8 marks)	
Q3	a)	Consider an arbitrary heat engine which operates between two reservoirs, each of which has the same finite temperature independent heat capacity c. The reservoirs have initial temperatures T_1 and T_2 where $T_2 > T_1$ and the engine operate until both the reservoirs have the same final temperature T_3 . Give the argument which shows that		
		$T_3 > \sqrt{T_1 T_2}$	(10 marks)	
	b)	Show that for a Carnot cycle, the ratio of the heat supplied Q_c heat rejected Q_c is the ratio of their absolute temperature T_F respectively		
Q4	a)	Show that the equation of a reversible adiabatic is given by	pV ^γ (10 marks)	
	b)	A Carnot cycle operates between 200° C and 1200° C. (i) calculate its efficiency	(4 marks)	
		Calculate its coefficient of performance if it operates as a (ii) refrigerator (iii) heat pump	(3 marks) (3 marks)	
Q5	a)	Given that U = U(P, T) and V = V(P, T), show that the specific capacity at constant pressure can be expressed as	c heat	
		$c_{P} = \left(\frac{\partial H}{\partial T}\right)_{P}$	(10 marks)	
temperature The heat cap		Determine the increase in entropy of solid magnesium when temperature is increased from 300K to 800 K at atmospheric The heat capacity is given by the relation		
		C_P = 26.04 + 5.586 x 10 ⁻³ T + 28.476 x 10 ⁴ T ⁻² Where C_P is in J/molK and temperature in K	(10 marks)	

END

Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 2

ISO 9001:2015 Certified by the Kenya Bureau of Standards