THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA

Telephone: 891601-6

--- -- ----

SEPTEMBER – DECEMBER 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

REGULAR PROGRAMME

PHY 201: MECHANICS II

Duration: 2 Hours Date: DECEMBER 2019 INSTRUCTIONS: Answer Question ONE and ANY other TWO Questions

- Q1. Define the following terms: a)
 - i) Torque
 - ii) Rigid body
 - iii) Escape speed
 - iv) simple harmonic motion
 - v) Resonance
 - A body of mass 0.2kg is executing simple harmonic motion with an b) amplitude of 0.02m and a frequency of 20HZ.Calculate the period oscillation and the acceleration at the end of the oscillation

(4marks)

of

its

Show that the period in a simple pendulum is obtained by c)

$$T = 2\pi \sqrt{\frac{l}{g}}$$

(3marks)

d) A block whose mass m is 680 g is fastened to a spring whose spring constant k is 65 N/m. The block is pulled a distance x = 11 cm from equilibrium position at x = 0 on a frictionless surface and released rest at t = 0. from Calculate :

Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 1

ISO 9001:2015 Certified by the Kenya Bureau of Standards

(5marks)

i) The angular frequency

(3marks)

ii) The frequency

(2mark)

iii) The period of the resulting motion?

(1mark)

iv) What is the maximum speed V_m of the oscillating block,?

(3marks)

e) State Kepler's laws

(3marks)

A playful astronaut releases a bowling ball, of mass m =7.20 kg, into circular orbit about Earth at an altitude h of 350 km. What is the mechanical energy E of the ball in its orbit?

(3marks)

f)

g) Show that the kinetic energy of a satellite in a circular orbit is given by

$$K \cdot E = \frac{-U}{2}$$

(3marks)

Q2. a) What is gravitation

(1mark)

i) State Newton's law of gravitation

(2marks)

 Two particles, particle 1 of mass m1 = 6.0 kg and particles 2 m2 = 4.0 kg, and distance a = 2.0 cm.What is the net gravitational force 1,?

(3marks

b) State Kepler's third law of periods.

(2marks)

c) Show that the kinetic energy of a satellite in a circular orbit is given by $K.E = \frac{-GMm}{2r}$

Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 2

ISO 9001:2015 Certified by the Kenya Bureau of Standards

(4marks)

d) What must the separation be between a 5.2 kg particle and a 2.4 kg particle for their gravitational attraction to have a magnitude of 10⁻¹² N?

2.3X (4marks)

e) What linear speed must an Earth satellite have to be in a circular orbit at an altitude of 160 km above Earth's surface?

(2marks)

f) What is the period of revolution?

(2marks)

Q3. a) Define the following terms:

(4marks)

- i) Angular velocity
- ii) Rotational inertia
- iii) Angular momentum
- iv) Rotational axis
- b) State the law of angular momentum

(2marks)

c) Show that the kinetic energy for angular motion is given by $K \cdot E = \frac{1}{2}I\omega^2$

(4marks)

- d) An astronaut is being tested in a centrifuge. The centrifuge has a radius of 10 m and, in starting, rotates according to u = 0.30t², where t is in seconds and u is in radians. When t =5.0 s, what are the magnitudes of the astronaut's :
 - i) Angular velocity

(2marks)

ii) Linear velocity

(2marks)

iii) Tangential acceleration

(2marks)

Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 3

ISO 9001:2015 Certified by the Kenya Bureau of Standards

iv) Radial acceleration

(2marks)

v) Kinetic energy

(2marks)

- Q4. a) Differentiate between damped oscillations and simple harmonic motion
 - (2marks)
 - b) Given that the displacement for a particle is given by $X(t) = X_m \cos(\omega t + \emptyset)$
- .Find
- i) The velocity of the particle after a time t

(2marks)

ii) The acceleration of the particle

(2marks)

iii) The kinetic energy for the particle

(3marks)

c) State Hooke's law

(2marks)

d) A spring attached to a mass m exhibits simple harmonic motion. Find its angular frequency and period in terms of mass (m) and spring

constant (k)

(6marks)

e) A block has mass m = 2.72 X 10⁵ kg and is designed to oscillate at frequency f = 10.0 Hz and with amplitude x_m = 20.0 cm.What is the mechanical energy E of the spring–block system?

total (3marks)

Q5. a) Differentiate between a periodic and linear motion

(2marks)

b) For the damped oscillator of a body of m = 250 g, k =85 N/m,and b = 70 g/s. What is the period of the motion?

(3marks)

c) An object undergoing simple harmonic motion takes 0.25 s to travel from one point of zero velocity to the next such point. The distance between those points is 36 cm. Calculate:

(6marks)

Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 4

ISO 9001:2015 Certified by the Kenya Bureau of Standards

- i) The period
- ii) Frequency
- iii) Amplitude of the motion.
- d) What linear speed must an Earth satellite have to be in a circular orbit at an altitude of 160 km above Earth's surface?

(2marks)

e) What is the period of revolution

(2marks)

f) State the principle of superposition of forces

(2marks)

g) Show that a simple pendulum exhibits a simple harmonic motion

(3marks)

END