

Calculate (i) The time taken to reach maximum height
(ii) The maximum height reached
(iii) The range
(6marks)
(e) A U- tube with limbs of diameter 5.0 mm and 2.0 mm contain water of surface tension $7.0 \times 10^{-2} \mathrm{Nm}^{-2}$. The angle of contact zero
and $=10 \mathrm{~ms}^{-2}$) density $1.0 \times 10^{3} \mathrm{Kg} \mathrm{m}^{-3}$. Find the difference in levels. (g

(6marks)

Q2. (a) State the Newtons laws of motion
(6marks)
(b) A rocket develops an initial thrust of $3.3 \times 10^{7} \mathrm{~N}$ and has a lift- off mass of $2.8 \times 10^{6} \mathrm{Kg}$. Find the initial acceleration of the rocket at lift- off. $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
(7marks)
(c) Two blocks A and B are connected to each other on a horizontal frictionless floor and
Pulled to the right with an acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$ by force P . If $m_{1}=50 \mathrm{Kg} \wedge m_{2}=10 \mathrm{Kg}$. What is the value of T (Tension on the string connecting A and B) and P .
(7marks)
Q3. (a) A sign of mass 5.0 Kg is hung from the end B of a uniform bar $A B$ of mass 2.0 kg . the bar is hinged to a wall at A and held horizontally by a wire joining B to C which is on the
wall vertically
in the wire and that
above A. If the angle $A B C=30^{\circ}$, Find the force exerted by the hinge. ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
(6marks)
(b) A bullet of mass 10 g travels horizontally at a speed of $1.0 \times 10^{2} \mathrm{~m} / \mathrm{s}$ embeds itself in a block of wood of mass $9.9 \times 10^{2} \mathrm{~g}$ suspended by a string so that it can swing freely. Find
(i) The vertical height through which the block rises.
(ii) How much of the bullet's energy becomes internal energy.
(3marks)
(c) A jet of water emerges from a hose pipe of cross sectional area $5.0 \times 10^{-3} \mathrm{~m}^{2}$ with a velocity of $3.0 \mathrm{~ms}^{-1}$ and strike a wall at right angle. Calculate the force on the wall assuming the water is brought to rest and does not rebound. (Density of
water is

$$
\left.1.0 \times 10^{3} \mathrm{Kgm}^{-3}\right)
$$

Q4. (a) A shaft rotating at3.0 $\times 10^{3} \mathrm{rev} / \mathrm{min}$ is transmitting a power of 10 kW . Find the magnitude of the driving couple.

(4marks)

(b) A bicycle wheel is being tested at a repair shop. The angular velocity of the wheel is $4 \mathrm{rads} / \mathrm{sec}$ at the time $\mathrm{t}=0$. Its
angular
OP on the acceleration is constant and is $-1.2 \mathrm{rads} / \mathrm{s}^{2}$. A spoke wheel coincides with a positive X - axis at time $t=0 \mathrm{~s}$.
(i) What is the wheels angular velocity at time $t=3 \mathrm{~s}$
(3marks)
(ii) What angle does the spoke OP make with the positive X - axis at this time.
(4marks)
(c) A Discuss thrower turns with angular acceleration $\alpha=50 \mathrm{rad} / \mathrm{s}^{2}$ moving the Discuss in a circle of radius 0.80 m . Modelling the throwers arm as a rigid body so as r is constant, Find the
tangential
Discuss
when the and the centripetal components of the acceleration of the and the magnitude of the acceleration at the instant angular velocity (ωi is $10 \mathrm{rad} / \mathrm{s}$.
(9marks)
Q5. (a) (i) State the Archemedes principle.
(2marks)
(ii) A string support a solid copper block of mass 1 Kg (Density $9.0 \times 10^{3} \mathrm{Kgm}^{-3}$)
Which is completely immersed in water of density $1.0 \times 10^{3} \mathrm{Kgm}^{-3}$.
Calculate
The tension in the string.
(5marks)
(b) A garden sprinkler has 150 small holes each of area $2.0 \mathrm{~mm}^{2}$. If water is supplied at the rate of $3.0 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$, what is the average velocity of the spray?
(5marks)
(c) Obtain an estimate for velocity of emergence of a liquid from a hole in the side of a wide vessel 10 cm below the liquid surface.
(8marks)

END

