THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA

Telephone: 891601-6

--- -- -----

SEPTEMBER – DECEMBER 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

REGULAR PROGRAMME

PHY 101: MECHANICS I

Date:DECEMBER 2019Duration: 2 HoursINSTRUCTIONS:Answer Question ONE and ANY other TWO Questions

- Q1. (a) Explain the following terms.
 - (i) Couple
 - (ii) Torque
 - (iii) Moment of inertia
 - (iv) Hydrostatic
 - (v) Inelastic collision

(7marks)

- (b) A force F = 3i j +21.5k acts on an object and displaces it through r = 0.5i +20j -3k.
- Obtain (i) The magnitude of the force
 - (ii) The magnitude of displacement
 - (iii) The work done
 - (iv) The angle between the applied force and the displacement (8marks)
- (c) Two parallel, equal and opposite forces of magnitude 19N are 1.7 m apart on a straight Bar AB. Calculate the torque caused from end B.

80cm

(3marks)

(d) An object of mass 20g is projected with initial velocity of 200m/s at 40° to the horizontal.

Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 1

and =10m	s ⁻²)	(e)	of sur	(i) The time taken to reach maximum hei (ii) The maximum height reached (iii) The range ith limbs of diameter 5.0mm and 2.0mm co rface tension $7.0 X 10^{-2} Nm^{-2}$. The angle of ity $1.0 X 10^{3} Kg m^{-3}$. Find the difference in le	(6marks) ontain water contact zero	
				(6marl	ks)	
	Q2.	(a)	State the Ne	ewtons laws of motion	(0	
		(b)	(6ma A rocket develops an initial thrust of $3.3 \times 10^7 N$ and has a lif mass of $2.8 \times 10^6 Kg$. Find the initial acceleration of the			
	rocke	t at lift-	off.(g	$= 10 m_s^{-2}$)		
		 (7marks) (c) Two blocks A and B are connected to each other on a horizontal frictionless floor and 				
			Pulled to the $m_1 = 5$	e right with an acceleration of 2.0 m/ s^2 by for $Kg \wedge m_2 = 10 Kg$. What is the value of T(Te g connecting A and B) and P.		
	Q3.	(a)	•	ass 5.0Kg is hung from the end B of a unif ass 2.0kg. the bar is hinged to a wall at A horizontally by a wire joining B to C whic	and held	
		erticall wire a		above A. If the angle ABC = 30° , I exerted by the hinge. (g= $10m/s^2$)		
	010		A bullet of m embeds itse a strir (i) Th (ii) Ho		spended by ses.	
	right	(c)	5.0 <i>X</i>	er emerges from a hose pipe of cross sect $10^{-3}m^2$ with a velocity of 3.0 ms^{-1} and strike. Calculate the force on the wall assuming	e a wall at the water is	
	water	is		brought to rest and does not rebound. (D $1.0 \times 10^3 Kgm^{-3}$)	ensity of	
	0.4		A 1 61 4 4		(7marks)	

Q4. (a) A shaft rotating $at_{3.0 X 10^3} rev/min$ is transmitting a power of 10kW. Find the magnitude of the driving couple.

Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 2

(4marks)

(b)	A bicycle wheel is being tested at a repair shop. The angular velocity of the wheel is 4rads/sec at the time t = 0. Its
angular OP on the	acceleration is constant and is -1.2 rads/ s^2 . A spoke wheel coincides with a positive X- axis at time t = 0s.
	 What is the wheels angular velocity at time t = 3s (3marks)
	(ii) What angle does the spoke OP make with the positive X- axis at this time.

(4marks)

A Discuss thrower turns with angular acceleration $\alpha = 50 rad/s^2$			
moving the Discuss in a circle of radius 0.80m. Modelling the			
throwers arm as a rigid body so as r is constant, Find the			
and the centripetal components of the acceleration of the			
and the magnitude of the acceleration at the instant			
angular velocity (ω¿ is 10 rad/s.			

(9marks)

Q5. (a) (i) State the Archemedes principle.

(2marks)

- (ii) A string support a solid copper block of mass 1Kg (Density $9.0 \times 10^3 \text{ Kgm}^{-3}$)
- Which is completely immersed in water of density $1.0 \times 10^{3} Kgm^{-3}$. Calculate

The tension in the string.

(5marks)

(b) A garden sprinkler has 150 small holes each of area 2.0_{mm}^2 . If water is supplied at the rate of $3.0 \times 10^{-3} m^3/s$, what is the velocity of the spray?

average

(5marks)

(c) Obtain an estimate for velocity of emergence of a liquid from a hole in the side of a wide vessel 10cm below the liquid surface. (8marks)

Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 3

Cuea/ACD/EXM/DECEMBER 2019 /PHYSICS Page 4