THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A
REGINA PACIS INSTITUTE OF HEALTH SCIENCES
MAIN EXAMINATION
P.O. Box 62157
00200 Nairobi - KENYA
Telephone: 891601-6
- -............
\section*{SEPTEMBER - DECEMBER 2019 TRIMESTER}
FACULTY OF SCIENCES
DEPARTMENT OF COMMUNITY HEALTH
REGULAR PROGRAMME
HBMS 103: BIOSTATISTICS

Date: DECEMBER 2019
Duration: 2:30 Hours
INSTRUCTIONS: Answer ALL Questions in SECTION A and any TWO in SECTION B

SECTION A [40 MARKS] All questions are compulsory.

Q1. a) Explain the four characteristics of scales of measurement in statistics
(4 Marks)
b) Explain the relationship between the following terms in statistics
i) Sample and population
(2 Marks)
ii) Continuous and quantitative variable
c)
i) Applicants for a job were rated by two members of the interviewing panel, with the following results.

Applicant	A	B	C	D	E
Member 1	4	1	3	2	5
Member 2	3	2	5	1	4

Find the spearman correlation coefficient for the above data
(6 Marks)
Given a set of paired data (X, Y)
a) If Y is independent of X, then what value of a correlation coefficient would you expect?
(2 Marks)
b) If Y is linearly dependent on X , then what value of a correlation coefficient would you expect?
(2 Marks)
c) Components in a personal stereo are normally distributed with a mean life of 2400 hours with a standard deviation of 300 hours. It is estimated that the average user listens for about 1000 hours in one year. What is the probability that a component lasts for more than three years? (3 Marks)
d) IQs are designed to be normally distributed with a mean of 100 and a variance of 225. To join High School an IQ of 138 is required. What percentage of the population are eligible to join?
(3 Marks)
e) A psychologist claims that any child with an IQ of 150 and above is "gifted". How many "gifted" children would you expect to find in a school of 1800 pupils?
(3 Marks)
f) Find the mean, mode median and standard deviation of the following data: 12, $10,15,10,16,12,10,15,15,13$
(9 Marks)
g) Compute the Semi interquartile range for the data in question e above
(4 Marks)

SECTION B - CHOOSE TWO QUESTIONS - (40 Marks)

Q2. Use the data of X and Y to determine the following?
X 1320221819111015
Y 1719231620101118
a) Calculate the product moment correlation coefficient
(9 Marks)
b) Interpret the correlation coefficient
(2 Marks)
c) Draw a scatter plot of blood pressure against age
(3 Marks)
d) Find the equation of the regression line of x on y
(4 Marks)
e) Use your regression line equation to estimate the value of Y when X is 30
(2 Marks)
Q3. One of the questions in the 2004 General Social Survey attempted to determine whether exposure to television weakens or strengthens confidence in the (presumably) television press. At 0.05 level of significance, do the hours of exposure to TV have effect on confidence in the TV press?
(10 Marks)

	Hours of exposure		
	$\mathbf{0 - 1}$	$\mathbf{2 - 4}$	$\mathbf{5}$ or more
A good deal of confidence	276	41	17
Only some confidence	196	174	47
Hardly any confidence	130	97	15

Q4. The newspaper division has compiled data on the age of accounts receivables. The data collected indicate that the age of the accounts follows a normal distribution with mean 20 days and standard deviation 4 days.
i. What proportion of the accounts is between 16 and 30 days old?
(2 Marks)
ii. What proportion of the accounts are less than 20 days old?
(2 Marks)
iii. Explain any four characteristics of standard normal distribution
(4 Marks)
iv. What is the difference between type 1 and type II error in hypothesis testing?
(2 Marks)

$$
\begin{aligned}
& \bar{x}=\frac{\sum x}{n}, \mu=\frac{\sum x}{N} s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}} \bar{x}=\frac{\sum x f}{n}, s=\sqrt{\frac{\sum(x-\bar{x})^{2} f}{n-1}} C V=\frac{s}{\bar{x}} \quad z=\frac{x-\mu}{\sigma} \quad z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}, n \geq 30, \\
& \bar{x}-z_{c} \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+z_{c} \frac{\sigma}{\sqrt{n}}, S S_{x}=\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}, S S_{y}=\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}, S S_{x y}=\sum x y-\frac{\left(\sum x\right)\left(\sum y\right)}{n}, \\
& \quad \text { Some helpful formulas }
\end{aligned}
$$

Chi-Square Distribution Table

The shaded area is equal to α for $x^{2}=x^{2}$.

$d f$	x^{2}									
	.995	.990	.975	.950	.900	.100	.050	.025	.010	.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.277	14.860
								3		
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.11	11.65	27.204	30.144	32.852	36.191	38.582
				7	1					
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.59	13.240	29.615	32.671	35.479	38.932	41.401

				1						
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.61	16.473	34.382	37.652	40.646	44.314	46.928
				1						
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.15	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	1	16.928	18.939	37.916	41.337	44.461	48.278
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.333
29	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
30	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.42	104.21
									5	5
80	51.172	53.540	57.153	60.391	64.278	96.578	101.87	106.62	112.32	116.32
							9	9	9	1
90	59.196	61.754	65.647	69.126	73.291	107.56	113.14	118.13	124.11	128.29
						5	5	6	6	9
100	67.328	70.065	74.222	77.929	82.358	118.49	124.34	129.56	135.80	140.16
						8	2	1	7	9

Z Table

Table entry for z

is the area
under the
standard normal curve
to the left of z.
z

Standard normal probabilities										
z	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	0	1	2	3	4	5	6	7	8	9
-3.4	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
-3.3	3	3	3	3	3	3	3	3	3	2
-3.2	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
-3	5	5	5	4	4	4	4	4	4	3
-3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	7	7	6	6	6	6	6	5	5	5

	.001 0 .001 3	$\begin{aligned} & .000 \\ & 9 \\ & .001 \\ & 3 \end{aligned}$	$\begin{aligned} & .000 \\ & 9 \\ & .001 \\ & 3 \end{aligned}$	$\begin{aligned} & .000 \\ & 9 \\ & .001 \\ & 2 \end{aligned}$	$\begin{aligned} & .000 \\ & 8 \\ & .001 \\ & 2 \end{aligned}$	$\begin{aligned} & .000 \\ & 8 \\ & .001 \\ & 1 \end{aligned}$	$\begin{aligned} & .000 \\ & 8 \\ & .001 \\ & 1 \end{aligned}$	$\begin{aligned} & .000 \\ & 8 \\ & .001 \\ & 1 \end{aligned}$	$\begin{aligned} & .000 \\ & 7 \\ & .001 \\ & 0 \end{aligned}$	$\begin{aligned} & .000 \\ & 7 \\ & .001 \\ & 0 \end{aligned}$
-2.9	. 001	. 001	. 001	. 001	. 001	. 001	. 001	. 001	. 001	. 001
-2.8	9	8	8	7	6	6	5	5	4	4
-2.7	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 001
-2.6	6	5	4	3	3	2	1	1	0	9
-2.5	. 003	. 003	. 003	. 003	. 003	. 003	. 002	. 002	. 002	. 002
	5	4	3	2	1	0	9	8	7	
	. 004	. 004	. 004	. 004	. 004	. 004	. 003	. 003	. 003	. 003
	7	5	4	3	1	0	9	8	7	
	. 006	. 006	. 005	. 005	. 005	. 005	. 005	. 005	. 004	. 004
	2	0	9	7	5	4	2	1	9	8
-2.4	. 008	. 008	. 007	. 007	. 007	. 007	. 006	. 006	. 006	. 006
-2.3	2	0	8	5	3	1	9	8	6	4
-2.2	. 010	. 010	. 010	. 009	. 009	. 009	. 009	. 008	. 008	. 008
-2.1	7	4	2	9	6	4	1	9	7	4
-2.0	. 013	. 013	. 013	. 012	. 012	. 012	. 011	. 011	. 011	. 011
	9	6	2	9	5	2	9	6	3	0
	. 017	. 017	. 017	. 016	. 016	. 015	. 015	. 015	. 014	. 014
	9	4	0	6	2	8	4	0	6	3
	. 022	. 022	. 021	. 021	. 020	. 020	. 019	. 019	. 018	. 018
	8	2	7	2	7	2	7	2	8	3
-1.9	. 028	. 028	. 027	. 026	. 026	. 025	. 025	. 024	. 023	. 023
-1.8	7	1	4	8	2	6	0	4	9	3
-1.7	. 035	. 035	. 034	. 033	. 032	. 032	. 031	. 030	. 030	. 029
-1.6	9	1	4	6	9	2	4	7	1	4
-1.5	. 044	. 043	. 042	. 041	. 040	. 040	. 039	. 038	. 037	. 036
	6	6	7	8	9	1	2	4	5	7
	. 054	. 053	. 052	. 051	. 050	. 049	. 048	. 047	. 046	. 045
	8	7	6	6	5	5	5	5	5	5
	. 066	. 065	. 064	. 063	. 061	. 060	. 059	. 058	. 057	. 055
	8	5	3	0	8	6	4	2	1	9
-1.4	. 080	. 079	. 077	. 076	. 074	. 073	. 072	. 070	. 069	. 068
-1.3	8	3	8	4	9	5	1	8	4	1
-1.2	. 096	. 095	. 093	. 091	. 090	. 088	. 086	. 085	. 083	. 082
-1.1	8	1	4	8	1	5	9	3	8	3
-1.0	. 115	113	. 111	109	. 107	. 105	. 103	. 102	. 100	. 098
	1	1	2	3	5	6	8	0	3	
	. 135	. 133	. 131	. 129	. 127	. 125	. 123	. 121	. 119	. 117
	7	5	4	2	1	1	0	0	0	
	. 158	. 156	. 153	. 151	. 149	. 146	. 144	. 142	. 140	. 137
	7	2	9	5	2	9	6	3	1	9
-0.9	. 184	. 181	. 178	. 176	. 173	. 171	. 168	. 166	. 163	. 161
-0.8	1	4	8	2	6	1	5	0	5	1
-0.7	. 211	. 209	. 206	203	. 200	. 197	. 194	. 192	189	. 186
-0.6	9	0	1	3	5	7	9	2	4	7
-0.5	. 242	. 238	. 235	232	. 229	. 226	. 223	. 220	217	. 214

	0	9	8	7	6	6	6	6	7	8
	.274	.270	.267	.264	.261	.257	.254	.251	.248	.245
	3	9	6	3	1	8	6	4	3	1
	.308	.305	.301	.298	.294	.291	.287	.284	.281	.277
	5	0	5	1	6	2	7	3	0	6
-0.4	.344	.340	.337	.333	.330	.326	.322	.319	.315	.312
-0.3	6	9	2	6	0	4	8	2	6	1
-0.2	.382	.378	.374	.370	.366	.363	.359	.355	.352	.348
-0.1	1	3	5	7	9	2	4	7	0	3
0.0	.420	.416	.412	.409	.405	.401	.397	.393	.389	.385
	7	8	9	0	2	3	4	6	7	9
	.460	.456	.452	.448	.444	.440	.436	.432	.428	.424
	2	2	2	3	3	4	4	5	6	7
	.500	.496	.492	.488	.484	.480	.476	.472	.468	.464
	0	0	0	0	0	1	1	1	1	1

Standard normal probabilities (continued)										
z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.	. 500	. 504	. 508	. 512	. 516	. 51	. 523	. 52	. 531	. 535
0	0	0	0	0	0	99	9	79	9	9
0.	. 539	. 543	. 547	. 551	. 555	. 55	. 563	. 56	. 571	. 575
1	8	8	8	7	7	96	6	75	4	3
0.	. 579	. 583	. 587	. 591	. 594	. 59	. 602	. 60	. 610	. 614
2	3	2	1	0	8	87	6	64	3	1
0.	. 617	. 621	. 625	. 629	. 633	. 63	. 640	. 64	. 648	. 651
3	9	7	5	3	1	68	6	43	0	7
0.	. 655	. 659	. 662	. 666	. 670	. 67	. 677	. 68	. 684	. 687
4	4	1	8	4	0	36	2	08	4	9
0.	691	695	. 698	. 701	. 705	. 70	. 712	. 71	. 719	. 722
5	5	0	5	9	4	88	3	57	0	4
0.	725	. 729	. 732	. 735	. 738	. 74	. 745	. 74	. 751	. 754
6	7	1	4	7	9	22	4	86	7	9
0.	. 758	. 761	. 764	. 767	. 770	. 77	. 776	. 77	. 782	. 785
7	0	1	2	3	4	34	4	94	3	2
0.	. 788	. 791	. 793	. 796	. 799	. 80	. 805	. 80	. 810	. 813
8	1	0	9	7	5	23	1	78	6	3
0.	. 815	. 818	. 821	. 823	. 826	. 82	. 831	. 83	. 836	. 838
9	9	6	2	8	4	89	5	40	5	9
1.	. 841	. 843	. 846	. 848	. 850	. 85	. 855	. 85	. 859	. 862
0	3	8	1	5	8	31	4	77	9	1
1.	. 864	. 866	. 868	. 870	. 872	. 87	. 877	. 87	. 881	. 883
1	3	5	6	8	9	49	0	90	0	0
1.	. 884	. 886	. 888	. 890	. 892	. 89	. 896	. 89	. 899	. 901
2	9	9	8	7	5	44	2	80	7	5
1.	. 903	. 904	. 906	. 908	. 909	. 91	. 913	. 91	. 916	. 917
3	2	9	6	2	9	15	1	47	2	7
1.	. 919	. 920	. 922	. 923	. 925	. 92	. 927	. 92	. 930	. 931
4	2	7	2	6	1	65	9	92	6	9
1.	. 933	. 934	. 935	. 937	. 938	. 93	. 940	. 94	. 942	. 944
5	2	5	7	0	2	94	6	18	9	1

1.	.945	.946	.947	.948	.949	.95	.951	.95	.953	.954
6	2	3	4	4	5	05	5	25	5	5
1.	.955	.956	.957	.958	.959	.95	.960	.96	.962	.963
7	4	4	3	2	1	99	8	16	5	3
1.	.964	.964	.965	.966	.967	.96	.968	.96	.969	.970
8	1	9	6	4	1	78	6	93	9	6
1.	.971	.971	.972	.973	.973	.97	.975	.97	.976	.976
9	3	9	6	2	8	44	0	56	1	7
2.	.977	.977	.978	.978	.979	.97	.980	.98	.981	.981
0	2	8	3	8	3	98	3	08	2	7
2.	.982	.982	.983	.983	.983	.98	.984	.98	.985	.985
1	1	6	0	4	8	42	6	50	4	7
2.	.986	.986	.986	.987	.987	.98	.988	.98	.988	.989
2	1	4	8	1	5	78	1	84	7	0
2.	.989	.989	.989	.990	.990	.99	.990	.99	.991	.991
3	3	6	8	1	4	06	9	11	3	6
2.	.991	.992	.992	.992	.992	.99	.993	.99	.993	.993
4	8	0	2	5	7	29	1	32	4	6
2.	.993	.994	.994	.994	.994	.99	.994	.99	.995	.995
5	8	0	1	3	5	46	8	49	1	2
2.	.995	.995	.995	.995	.995	.99	.996	.99	.996	.996
6	3	5	6	7	9	60	1	62	3	4
2.	.996	.996	.996	.996	.996	.99	.997	.99	.997	.997
7	5	6	7	8	9	70	1	72	3	4
2.	.997	.997	.997	.997	.997	.99	.997	.99	.998	.998
8	4	5	6	7	7	78	9	79	0	1
2.	.998	.998	.998	.998	.998	.99	.998	.99	.998	.998
9	1	2	2	3	4	84	5	85	6	6
3.	.998	.998	.998	.998	.998	.99	.998	.99	.999	.999
0	7	7	7	8	8	89	9	89	0	0
3.	.999	.999	.999	.999	.999	.99	.999	.99	.999	.999
1	0	1	1	1	2	92	2	92	3	3
3.	.999	.999	.999	.999	.999	.99	.999	.99	.999	.999
2	3	3	4	4	4	94	4	95	5	5
3.	.999	.999	.999	.999	.999	.99	.999	.99	.999	.999
3	5	5	5	6	6	96	6	96	6	7
3.	.999	.999	.999	.999	.999	.99	.999	.99	.999	.999
4	7	7	7	7	7	97	7	97	7	8

END

