

Q2. When the selling price of a product is Rs. 3.50 04, the demand will be 250 units per day. When the price is increased to Rs. 5.50 per unit, the demand will be reduced to 50 units per day.
Assuming a linear relationship between number of units in demand per day \& selling price per unit.
(i) Write down the demand function.
(7 Marks)
(ii) Write down the revenue function.
(7 Marks)
(iii) Find the quantity of which maximizes the total revenue.

Q3. a) A company that produces mirrors for telescopes estimates the values for the following functions when 1200 mirrors are produced: $\mathrm{R}(1200)=$ $\$ 30,000, C(1200)=\$ 23,000, \operatorname{MR}(1200)=\$ 400$, and
$\mathrm{MC}(1200)=\$ 100$. Due to a change in the economy, the revenue function decreased by the revenue, cost, marginal new economic conditions if 1200
$\$ 5000$ and cost increased by 10\%. Determine revenue, and marginal cost under the mirrors are produced.

(10 Marks)

b) The Demand and Supply function for a good are given as:

Demand function:
$P=200-0.75 q$
Supply function:
$P=20+0.75 q$
Calculate the equilibrium price and quantity algebraically and graphically.

Marks)

Q4. i) Solve the following simultaneous equations:
a) $x-y+z=2$
$x+2 y-2 z=-1$
$-x+2 y+2 z=9$
(2.5 Marks)
b) $3 y+y-z=2$
$x+2 y-z=2$
$5 x+3 y+z=14$
(2.5 Marks)
c) $38+2 p=6 q$
$5 p+8 q=89$
(2.5 Marks)
d) $5 x-2 y=7$
$3 x+8 q=21$
ii) Differentiate
a) $3 x^{5}+4 x^{3}-x-3$
b) $3 x^{2}+2 \sqrt{x}$
c) $4+\frac{3}{x}$
(2.5 Marks)
d) $\frac{2 x+\sqrt{x}}{x^{2}}$
(2.5 Marks)

CMS 121 BUSINESS MATHEMATICS FORMULAR

1. $0!=1$
2. ${ }^{n} P_{r}$ or ${ }_{n} P_{r}=\frac{n!}{(n-1)!}$
3. ${ }^{n} P_{n}=n$!
4. $n!=n(n-1)(n-2)(n-3) \ldots 1$
5. ${ }^{n} P_{r}=n(n-1)(n-2)(n-3) \ldots[n-(r-1)]$ $n(n-1)(n-2)(n-3) \ldots[n-(r-1)]$
6. ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ or ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=$
7. ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-1)!}$ Where $\mathrm{r}=0.1,2,3 \ldots \mathrm{n}$
8. ${ }^{\mathrm{n}} \mathrm{C}_{0}=1$
9. ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=1$
10. ${ }^{n} C_{n-r}={ }^{n} C_{r}$, where $r=0,1,2,3 \ldots n$
11. ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
12. $\quad{ }^{\mathrm{n}} \mathrm{C}_{n-\mathrm{r}}=\frac{n!}{(n-1)!r!}$ where $\mathrm{r}=0,1,2,3 \ldots \mathrm{n}$
13. $\frac{d}{d x}\left(x^{n}\right)=\mathrm{n}^{x^{n-1}}$
14. $\quad \frac{d}{d x}$ (constant) $=0$ (zero)
15. $\quad \frac{d}{d x}$ (constant x function) $=$ constant $\mathrm{x}^{\frac{d}{d x}} \mathrm{X}$ function
16. $\frac{d}{d x}(\mathrm{u}+\mathrm{v})=\frac{d u}{d x}+\frac{d v}{d x}$
17. $\frac{d}{d x}(\mathrm{u}+\mathrm{v}+\mathrm{w}+\ldots)=\frac{\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}+\ldots}{}$
18. $\frac{d}{d x}(\mathrm{u}-\mathrm{v})=\frac{d u}{d x}-\frac{d v}{d x}$

19. $\quad \frac{d}{d x}(\mathrm{uv})=\mathrm{u}^{\frac{d v}{d x}}(\mathrm{v})+\mathrm{v}^{\frac{d u}{d x}}(\mathrm{u})$
20. $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x} u-u \frac{d v}{d x} v}{v^{2}}=\frac{D r)\left(\frac{d u}{d x}(N r)-(N r) \frac{d v}{d x}(D r)\right.}{(D r)^{2}}$
21. $\quad \frac{d y}{d x}=\frac{\frac{d y}{d t}}{d x}$
22. $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$
23. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x} \cdot \frac{d y}{d x}$
24. $\quad \frac{d}{d x}(\mathrm{UVW})=\mathrm{uv}^{\frac{d w}{d x}}+\mathrm{uW}^{\frac{d v}{d x}}+\mathrm{VW}^{\frac{d u}{d x}}$
25. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$
26. $\int \frac{1}{x} d x=\log _{\mathrm{e}} \mathrm{X}+\mathrm{c}$
27. $\int e^{a x} d x=\frac{e^{a x}}{a}+c$
28. $\quad \int a^{x} d x=\frac{a^{x}}{\log a}+c$
29. $\int k d x=k x+c$
30. $\int e^{x} d x=e^{x}+\mathrm{c}$
31. $\int 1 \cdot d x=\mathrm{x}+\mathrm{c}$
32. $\int(a x+b)^{n} d x=\frac{1}{a} \frac{(a x+b)^{n+1}}{(n+1)}+\mathrm{c}$
33. $\int \frac{d x}{a x+b}=\frac{1}{a} \cdot \log (\mathrm{ax}+\mathrm{b})+\mathrm{c}$
34. $\int e^{a x+b} d x=\frac{1}{a} e^{a x+b}+\mathrm{c}$
35. $\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x+\mathrm{c}$ OR $\int u v d x=u v^{1}+u^{\prime} v^{2}+u^{\prime \prime} v^{3}-u^{\prime \prime \prime} v^{4}-\ldots$
36. $\int_{-a}^{a} f(x) d x=\left\{\begin{array}{cc}2 \int_{0}^{a} f(x) d x=\text { if } f(x) \text { is even } \\ 0 & \text { if } f(x) \text { is } 0 d d\end{array}\right.$
37. $\int_{a}^{h} f(x) d x=[\mathrm{g}(\mathrm{x})+\mathrm{c}]^{h}$

$$
\begin{aligned}
& =\{g(b)+c\} _\{g(a)+c\} \\
& =g(\mathrm{~b})-\mathrm{g}(\mathrm{a})
\end{aligned} \quad \begin{aligned}
& \\
\text { 39. } \quad \int \frac{f^{\prime}(x)}{f(x)} & d x
\end{aligned} \text { where } \mathrm{f}^{\prime}(\mathrm{x}) \text { is the derivative of } \mathrm{f}(\mathrm{x})
$$

Put $\mathrm{f}(\mathrm{x})=\mathrm{t}$, then $\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}=\mathrm{dt}$
Thus $\int \frac{f f(x)}{f(x)} d x=\int \frac{d t}{t} \log t=\log f(x)$
40. $\int[f(x)]^{n} f^{\prime}(x) d x, n \neq-1$ put $\mathrm{f}(\mathrm{x})=\mathrm{t}$, then $\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}=\mathrm{dt}$

Thus $[f(x)]^{n} f^{\prime}(x) d x=\int t^{n} d t=\frac{t^{n+1}}{n+1}=\frac{[f(x)]^{n+1}}{n+1}$
41. $\int f^{\prime}(a x+b) d x$, put $(\mathrm{ax}+\mathrm{b})=\mathrm{i}$, then $\mathrm{adx}=\mathrm{dt}, \mathrm{dx}=\frac{d t}{a}$

Thus $\int f^{\prime}(a x+b) d x=\int f^{\prime}(t) \frac{d t}{a}=\frac{1}{a} \int f^{\prime}(t) d t=\frac{1}{a}[f(t)]=\frac{f(a x+b)}{a}$
42. Revenue = price times quantity
$R(x)=P x$
43. \quad Profit $=$ revenue minus cost
$P(x)=R(x)-C(x)$
44. Breakeven point (BEP)

Revenue = Cost

$$
R(x)=C(x)
$$

Profit = zero (0)
$P(x)=0$
END

