THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA

Telephone: 891601-6

--- -- -----

SEPTEMBER – DECEMBER 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

REGULAR PROGRAMME

CHEM 202: NUCLEAR AND RADIATION CHEMISTRY

Date: DECEMBER 2019

Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any other Two Questions

Avogadro's number: $6.023*10^{23}$ atoms/mol. Mass of proton is 1.00738 amu Mass of neutron is 1.00866 amu Mass of electron is 5.456 x 10^{-4} amu 1 amu = 931.5 MeV

Q1. a) Carbon-13 is a neutron rich radioactive isotope of carbon which constitutes 1.1% of the total natural occurring carbon. Using a relevant equation, explain how it regains stability

(2 marks)

b) Iron-56 has 30 neutrons and 26 protons. If it's atomic weight is 55.9349375 amu, calculate it's binding energy per nucleon **(4**

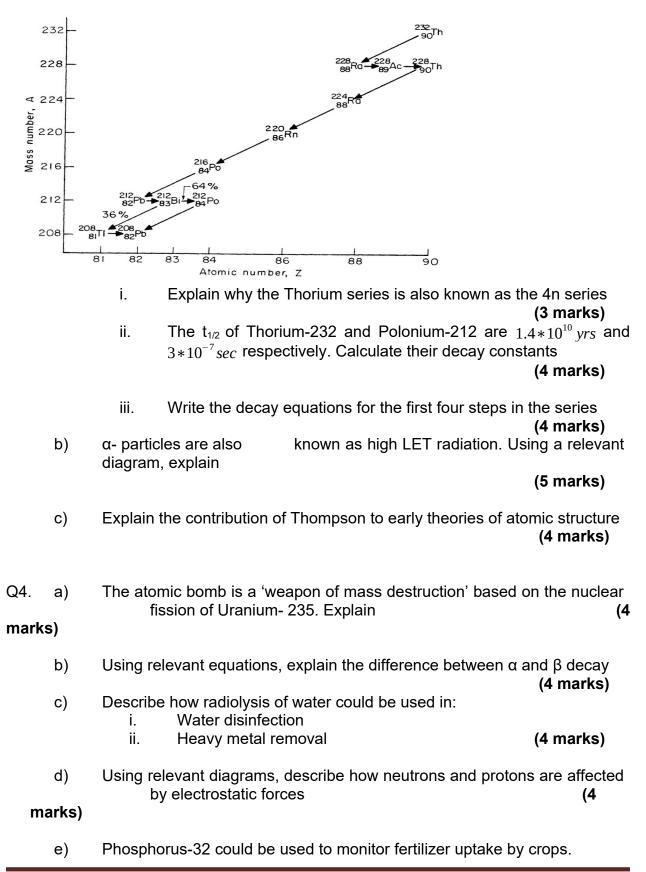
marks)

- c) Using relevant diagram(s), explain the composition and function of the following parts of a nuclear reactor:
 - i. Control rods
 - ii. Fuel rods

(6 marks)

- iii. Moderator
- d) Uranium-238 decays to Thorium-234.
 - Calculate the amount of Uranium 238 remaining after 10,000 years if the initial mass is 129g. (The half-life of U-238 is

Cuea/ACD/EXM/DECEMBER 2019 / CHEMISTRYPage 1


i.

	 4.468*10⁹ years.) (4 marks) ii. The t_{1/2} of Uranium-238 and Thorium-234 are 4.468 and 24.1 days respectively. Describe this type of equilibrium. Derive the t_{max} for this radioactive equilibrium. 	radioactive
e)	Illustrate how a 3-g nucleon orbital would split according to the	spin- orbit
marks)	coupling model	(4
f) diagram, with mati	•	I- labelled
with mat		marks)
Q2. a) disintegratio occur if the o disintegratio		of 15.285 did the fire
b)	Using a relevant diagram, explain the working principle of mass spectrometer	(6
marks) c)	Strong nuclear forces act independent of charge. Using a releva diagram, explain.	-
marks) d)	Assuming that the $\frac{Pb_{82}^{206}}{U_{99}^{238}}$ ratio in a rock sample is 0.45, calcula	
	(The half-life of U-238 is $4.468^{*}10^{9}$ years.)	(5

marks)

Q3. a) Use the Thorium decay series below to answer the questions that follow:

Cuea/ACD/EXM/DECEMBER 2019 / CHEMISTRYPage 2

Cuea/ACD/EXM/DECEMBER 2019 / CHEMISTRYPage 3

Explain.

(4marks)

Q5.	a)	Uranium could be isolated from it's natural decay chain using a Explain using relevant equations	icid action. (6
mark	(S)		·
	b)	Describe the principle of an Fe ⁺⁺ dosimeter (5	marks)
	c)	Using examples, explain the difference between 'isotopes' and	d 'isobars'. (4
m	arks)		(-
d	$\overset{{}_{\scriptstyle ar{l}}}{_{\scriptstyle I4}}$ an	nd <i>Si</i> ²⁸ ₁₄ consists of 3.09% and 92.23% of the total amount of natura silicon respectively. Using the stability curve, explain this pheno (5 marks)	menon.

(5 marks)

END

Cuea/ACD/EXM/DECEMBER 2019 / CHEMISTRYPage 4