

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157 00200 Nairobi - KENYA

MAIN EXAMINATION

Telephone: 891601-6

SEPTEMBER – DECEMBER 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF BIOLOGY

REGULAR PROGRAMME

BIO 300: PRINCIPLES OF BIOSTATISTICS AND DATA ANALYSIS

Date	e: DEC	EMBER 20	19 Duration: 2 He	ours
INS	TRUCT	IONS: Ansv	wer Question ONE and any other TWO Questions	s. You are
prov	vided w	vith formula	e and tables you may need in this examination	
01		Maka a dia	tination botwoon	
QI.	a)		unction between	
		1)	Descriptive and interential statistics	(0
				(2
			marks)	
		II)	Sample and census	(0)
				(2
			marks)	
		III)	Permutations and combinations in probability statist	
			(2	marks)
		IV)	One tailed and two tailed tests of significance	(2)
				(2
		,	marks)	
		V)	Systematic sampling and stratified sampling	
				(4
			marks)	
	b)	I en membe	ers of a Biostatistics class had the following weights	(in Kg)
		55 67	74 70 60 68 75 68 88 74	
	Using	the machine	e formula determine the standard deviation in the we	ights of
	this cl	ass	(7	marks)
	,			
	c)	If a drug is	likely to be more effective than a control in each tria	I, what is
		the p	probability of it being more effective than a trial in exa	actly five

Cuea/ACD/EXM/DECEMBER 2019/SCIENCE (Biology)

ISO 9001:2015 Certified by the Kenya Bureau of Standards

out of six	trials?
marks)	

d) A County nutritional centre guidelines require that children who score in bottom 15% on Body-Mass Index (BMI) be given protein fortified foods. If the BMI is assumed to be normally distributed with a mean $\mu = 136$ and a standard deviation $\sigma = 27$, find the cut off BMI value below which a should be considered for provision of protein fortified foods

(5 marks)

e) Patients arrive at a hospital accident and emergency department at random at a rate of 6 per hour. Find the probability that, during any minute period, the number of patients arriving at the hospital accident and emergency department is exactly 7.
(3 marks)

- Q2. In an investigation of pregnancy induced hypertension, one group of women with this disorder was treated with low-dose aspirin, and a second group was given a placebo. A sample consisting of 23 women who received aspirin has mean blood pressure 111 mm Hg and standard deviation 8 mm Hg; a sample of 24 women who were given the placebo has mean blood pressure 109 mm Hg and standard deviation 8 mm Hg.
 - a) State the test statistic appropriate for the above data and why

(3 marks)

b) At the 0.01 level of significance, test the null hypothesis that the two populations of women have the same mean blood pressure.

(17 marks)

Q3. a) Nine batches of beetles were weighed, kept at different relative humidities and weighed again after six days of starvation. Weight in milligrams computed for each batch and the results were as shown below:

%	0	12	29.5	43	53	62.5	75.5	85	93
Relative									
humidit									
у									
Weight	8.98	8.14	6.67	6.08	5.90	5.83	4.68	4.20	3.72

Cuea/ACD/EXM/DECEMBER 2019/SCIENCE (Biology)

Page 2

ISO 9001:2015 Certified by the Kenya Bureau of Standards

loss in					
mg					

	Derive the linear regression	formula for the data	(10 marks)
b)	Below is a frequency distribucertain grassland Class Interval 88 – 95 80 – 87 72 – 79 64 – 71 56 – 63 48 – 55 40 – 47	ution for stem girth in centimeter Frequency 3 3 5 4 7 4 7	s of trees in a
	32 – 39 24 – 31 16 – 23 8 – 15	3 8 2 4	
marks)	i) Construct a relative freque	ency histogram for the above dat	ta (7
marks)	ii) Calculate the mean stem	girth for trees in this grassland	(3

Q4. A farmer is testing the effect of three different fertilizers, A, B, and C on the yields of tomato plants. He applies the fertilizers and then monitors the number of tomatoes grown on a random sample of four plants for each of the three types of fertilizer. The results in terms of number of tomatoes per plant are as follows:

А	В	С
24	21	16
18	26	22
27	32	19
28	25	17

Cuea/ACD/EXM/DECEMBER 2019/SCIENCE (Biology)

a) State the test statistic appropriate for the above data and why

marks)

b) At the α = 0.05 level of significance Test if there is any difference in the mean number of tomatoes grown per plant based on the type of

fertilizer.

(18 marks)

Q5. A survey in which independent random samples of people in three parts of the city were evaluated for whether or not they had malnutrition yielded the following results:

	Area A	Area B	Area C
Have malnutrition	87	73	66
Have no malnutrition	13	77	84

a) State the test statistic appropriate for the above data and why

(3 marks)

b) Can we conclude that area of residence and status of nutrition are related? Test at the 5% level of significance.

(17 marks)

(2

END

Cuea/ACD/EXM/DECEMBER 2019/SCIENCE (Biology)

ISO 9001:2015 Certified by the Kenya Bureau of Standards