

Q1. Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

Process	Burst		Priority	
Arrival Time				
P1		P	4	0
P2	6	1	2	
P3	1	2	2	
P4	9	2	1	
P5		3	3	3

(a) Draw four Gantt charts illustrating the execution of these processes using the following scheduling algorithms:
i) First Come First Served
ii) Shortest Job First (Preemptive)
(3 marks)
iii) Priority (a smaller priority number implies a higher priority)
iv) Round Robin (quantum=4)
v) What is the average waiting time for each of the scheduling algorithms above?
b) State any four elements of the process control block (PCB).
c) Consider the following snapshot of a system.

AllocationMaximumAvailable

i) Using Banker's algorithm, generate the Need matrix.
ii) Is this system in a safe state? If yes, show the sequence.

Q2. a) Distinguish the following terms:
i) Process and thread
(2 marks)
ii) Pre-emptive and non-preemptive scheduling
(2 marks)
iii) Logical and physical address
(b) Draw the 5 -state diagram of a process from its creation to termination, including all transitions.
(8 marks)
c) List any SIX functions of an operating system.
(6 marks)

Q3. a) Consider the following page reference string:
$5,7,6,0,7,1,7,2,0,1,7,1,0$
How many page faults would occur with 3 empty page frames using the following page replacement algorithms?
i) Least Recently Used
ii) First-In First-Out
iii) Optimal
b) List FOUR strategies for handling deadlocks.
c) State the term that can best be described by the following descriptions.
i) The condition in which there is a set of concurrent processes, only one of which is able to access a given resource or perform a given function at any time. (1 mark)
ii) The process of converting logical address into physical address.
iii) A situation in which a process is ready to execute but is continuously denied access to a processor in deference to other processes.
(1 mark)
iv) A memory management scheme that transfers the required pages into main memory but not the entire program.
(1 mark)
Q4. a) Briefly describe the role of the following schedulers.
i) Long-Term Scheduler
ii) Short-Term Scheduler
iii) Medium-Term Scheduler
b) List the FOUR conditions under which a deadlock situation may arise. (4 marks)
c) A system has four processes P1 through P4 and two resource types R1 and R2. It has 2 units of R1 and 3 units of R2. Given that:

P1 requests 2 units of R2 and 1 unit of R1
P 2 holds 2 units of R1 and 1 unit of R2
P3 holds 1 unit of R2
P 4 requests 1 unit of R1

Show the resource graph for this state of the system

Q5. a) Assume that the list of holes in a variable partition memory system contains the following entries (in the given order) $190 \mathrm{~KB}, 550 \mathrm{~KB}, 220 \mathrm{~KB}, 420 \mathrm{~KB}, 650 \mathrm{~KB}, 110 \mathrm{~KB}$. Consider the following sequence of requests: $A=210 \mathrm{~KB}, \mathrm{~B}=430 \mathrm{~KB}, \mathrm{C}=100 \mathrm{~KB}, \mathrm{D}=$ 420KB

Determine which holes would be allocated to which request by each of the following schemes:
i) First- Fit
(4 marks)
ii) Next-Fit
iii) Best-Fit
iv) Worst-Fit
b) Briefly describe FOUR benefits of threading.
END

