THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157

00200 Nairobi - KENYA

Telephone: 891601-6

MAIN EXAMINATION

MAY - JULY 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SPECIAL / SUPPLEMENTARY EXAMINATION

PHY 307: PHYSICAL ELECTRONICS

Date: JULY 2019 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any other Two Questions

Constants

Electron charge $q = 1.6 \times 10^{-19} C$

Mobility of electron in Silicon $\mu_e = 0.145 \, \text{m}^2 / \text{V.s}$

Mobility of holes in Silicon $\mu_p = 0.05 \, \text{m}^2 / \text{V.s}$

Mobility of electrons in Germanium $\mu_e = 0.38 \, \text{m}^2 / \text{V.s}$

Mobility of holes in Germanium $\mu_p = 0.18 \,\text{m}^2/\text{V.s}$

Boltzmann constant k=1.38 \times 10^{-23}j/K

1. (a) i, Differentiate between a conductor and a semi- conductor?

(2mks)

ii, What do you understand by the term "negative coefficient"

(1mk)

iii, Explain the following terms;

- > Acceptor ion
- Doping

Mean lifetime (3mks)

(b) i, State the mass action law (1mk)

- ii, Calculate the intrinsic conductivity of Silicon at room temperature if $n_i = 1.41 \times 10^{16} \, \text{m}^{-3}$, $\mu_e = 0.145 \, \text{m}^2 / \text{V} \cdot \text{s}$, $\mu_p = 0.05 \, \text{m}^2 / \text{V} \cdot \text{s}$ and
 - $q=1.6 \times 10^{-19} C$. What are the individual contributions made by electrons and holes. (8mks)
- (c) i, Distinguish between forward and reverse biasing of a P-N junction. (2mks)
 - ii, State three applications of semi- conductor diodes in modern electronic circuitry?

(3mks)

- (d) i, Calculate the barrier potential at room temperature (300K) for a P-N junction in Silicon which is doped to a carrier density of $10^{21} m^{-3}$ on the P- side and $10^{22} m^{-3}$. On the N- side. The intrinsic carrier density for Silicon is $1.4 \times 10^{16} m^{-3}$. (4 m/s)
- (e) A specimen of Silicon is 0.2mm long and a cross sectional area of 0.2 X 0.2mm. One Volt is impressed across the bar results in a current of 8mA. Assuming that the current is due to electrons, calculate
 - i, Concentration of free electrons
 - ii, Drift velocity given at 300K, $\mu_n = 1300 \,\text{m}^2/V$. s and $q = 1.6 \,\text{X} \, 10^{-19} \,\text{C}$ (6mks)
- 2.(a) Find the length of a round copper wire of diameter 1mm which will have a resistance of 1Ω and conductivity 1.58 \times 10⁷S/m. If the wire is subjected to an electric field of 10mV/m, What is the current density? (7mks)
- (b) A conduction wire has a resistivity of $1.54 \times 10^{-8} \Omega m$ at room temperature. There are $5.8 \times 10^{28} c$ conduction electrons per m^3 . Calculate the mobility of the electrons. (5mks)
- (c) The mobility of free electrons and holes in pure germanium are 0.38 and $0.18m^2/V.s$, The corresponding values in Silicon are 0.13 and $0.05m^2/V.s$ respectively. Find the value of intrinsic conductivity for both materials. Assume $n_i = 2.5 \times 10^{19}/m^3$ for Ge and $1.5 \times 10^{16}/m^3$ for Si at room temperature. (8mks)

- 3. (a) From Fermi Dirac probability distribution function, Show that for an intrinsic semiconductor, the Fermi level lie midway between the conduction and valence bands (10mks)
- (b) A specimen of pure Germanium at 300K has a density of charge carriers of $2.5 \times 10^{19} \, \text{cm}^3$. Its doped with a donor impurity atoms at the rate of one atom for every 10^6 atoms of Germanium. All impurity atoms may be ionized. The density of Ge atom is $4.2 \times 10^{28} \, \text{atoms/m}^3$. Find the resistivity of the doped germanium if the electron mobility is $0.36 \, \text{m}^2 / \text{V.s}$ (5mks)
- (c) Silicon is doped with acceptor atoms to a density of $10^{22} \, m^{-3}$. If its assumed that all acceptor centres are ionized, calculate the conductivity of extrinsic silicon. Given that intrinsic density is $1.4 \, X \, 10^{16} \, m^{-3}$. $\mu_e = 0.145 \, m^3 \wedge \mu_p = 0.05 \, m^{-3}$. (5mks)
- 4.(a) What do you understand by the terms

- (b) Germanium diode has saturation current of $10\mu A$ at room temperature 300K. Find the saturation current at 400K. (4mks)
 - (c) Show that the junction resistance for silicon or germanium diode is given by the equation;

$$r_j = \frac{26}{I_E}$$
 Where I_E is the diode current in milliamperes. (12mks)

- 5. (a) An intrinsic semi-conductor (Silicon) has $5 \times 10^{28} a toms/m^3$ at $20^{\circ}C$ room temperature. At this temperature, there are $1.5 \times 10^{16} e lectron hole$ pairs. Find the conductivity ($\sigma \dot{c}$ of silicon at $20^{\circ}C$. If the above material is doped with indium atoms at the rate of 1 atom per 10^7 silicon atoms, Find the conductivity of doped material at room temperature. If the conductivity increases at the rate of 5% per $^{\circ}C$ then find also the conductivity of doped silicon at $34^{\circ}C$ ($\mu_e = 0.145 \, m^2/V . s$, $\mu_p = 0.05 \, m^2/V . s$, $K = 1.38 \times 10^{-23} \land q = 1.6 \times 10^{-19} \, C \dot{c}$ (10 mks)
- (b) Determine the germanium P-N junction diode current for a forward bias voltage of 0.22V at room temperature 25°C with a reverse saturation current equal to 1mA. Take $\eta = 1$ (5mks)
- (c) A silicon diode has a bulk resistance of 2Ω and forward current of 12mA. What is the actual value of V_F for the device? (5mks)

END