THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6

MAY – JULY 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

SPECIAL / SUPPLEMENTARY EXAMINATION

MAT 263: PROBABILITY AND STATISTICS IV

Date: JULY 2019Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

QUESTION ONE (30 MARKS)

a) Suppose that three random variables X_1 , X_2 and X_3 have a continuous density function given by

$$f(x_1, x_2, x_3) = \begin{cases} c(x_1 + 2x_2 + 3x_3), 0 < x_i < 1, i = 1, 2, 3\\ 0, elsewhere \end{cases}$$

Determine:

i. The constant ^C

ii. The marginal p.d.f of
$$X_1$$
 and X_2
 $\Pr\left(x_3 < \frac{1}{2} / x_1 = \frac{1}{4}, x_2 = \frac{3}{4}\right)$
(8 marks)
 $Y = (Y_1 - Y_2 - Y_1 - Y_2)^2$

b) A random vector $\underline{X} = (X_1, X_2, X_3, X_4)$ has the 4-variate p.d.f given by $f(\underline{x}) = \begin{cases} 16x_1x_2x_3x_4, 0 < x_i < 1, i = 1, 2, 3, 4\\ 0, elsewhere \end{cases}$

Calculate the probability that $\frac{X}{-}$ lies in the region

Cuea/ACD/EXM/MAY – JULY 2019 / MATHEMATICS AND ACTUARIAL SCIENCE

Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

$$D = \{(x_1, x_2, x_3, x_4); x_1 < \frac{1}{2}, x_4 > \frac{1}{3}\}$$

(5marks)

(4

Page 2

c) Let ^y be distributed
$$N_3(\mu, \Sigma)$$
, where $\mu = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$, $\Sigma = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$.
Find the following:

i. The distribution of
$$z = 4y_1 - 6y_2 + y_3$$
 (3 marks)
ii. The distribution of $z = \begin{pmatrix} y_1 - y_2 + y_3 \\ 2y_1 + y_2 - y_3 \end{pmatrix}$ (4 marks)
 $z = \begin{pmatrix} (y_1 - y_2 + y_3) \\ (2y_1 + y_2 - y_3) \end{pmatrix}$ (4 marks)

iii.
$$f(y_2, y_1, y_3)$$
 (4 marks)

d) Let \overline{X} and S^2 be the mean and variance of a random sample of 25 from a distribution which is normal with mean 3 and variance 100.

Compute
$$\Pr\left(0 < \overline{X} < 6, 49.6 < S^2 < 145.6\right)$$
 (6 marks)

QUESTION TWO (20MARKS)

- a) Let \underline{Y} be a random vector distributed as $N_p(\mu_1, \Sigma)$. Let $\underline{Y} = (\underline{Y}_1, \underline{Y}_2)$ when \underline{Y}_1 and \underline{Y}_2 are $r \times 1$ and $s \times 1(r+s=p)$ random vectors:
 - i. Determine the distribution of $\frac{Y_{-1}}{2}$ and $\frac{Y_{-2}}{2}$ (6 marks)
 - ii. Show that $Y_i \square N[\mu_i, \sigma_{ii}], i = 1, 2, ..., p$. Where Y_i is the i^{ih} component of $\underline{Y}_i = \mathbb{E}(Y_i)_{and} \Sigma = (\sigma_{ij})_i$.

marks)

b) Let the random vector \underline{X} have $N_2[\mu, \Sigma]$ distribution with its pdf where *c* is some constant and $Q(\underline{x}) = x_1^2 + 2x_2^2 - x_1x_2 - 3x_1 - 2x_2 + 4$, find: i. *c* (3 marks)

Cuea/ACD/EXM/MAY – JULY 2019 / MATHEMATICS AND ACTUARIAL SCIENCE

ISO 9001:2008 Certified by the Kenya Bureau of Standards

μ ii. Σ iii.

QUESTION THREE (20MARKS)

a) Suppose that a three-dimensional random vector $\underline{X} = (x_1, x_2, x_3)$ has moment generating function

$$M(t_1, t_2, t_3) = \exp\left[\frac{1}{2}\left(5t_1^2 + 3t_2^2 + 2t_3^2 + 4t_1t_2 + 6t_1t_3\right)\right]$$

Determine:

$$\begin{array}{cccc} \sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{2}^{-3} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{3}^{-2} \end{array}$$

The matrix $\begin{pmatrix} \sigma_1 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{2}^3 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{3}^2 \end{pmatrix}$ of the variances and covariance's $\frac{X}{2}$ and hence i. obtain the matrix $\begin{pmatrix} 1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{13} & \rho_{23} & 1 \end{pmatrix}$ of the correlations between the components of

the random vector $\frac{X}{2}$ (6 marks)

The marginal distribution of X_1 and X_2 and write down its density function ii. (4 marks)

The correlation coefficient between $Y = X_1 + X_2$ and $Z = X_1 + X_2 + X_3$ iii. (4 marks)

b) Suppose that the random vector $\underline{X} = (X_1, X_2, \dots, X_p)'$ has a continuous distribution

$$f(x_1, x_2, \dots, x_p) = \left(\frac{1}{2\pi}\right)^{p/2} e^{-\frac{1}{2}\sum_{j=1}^{p} x_j}; -\infty < x_j < \infty$$

whose p.d.f is

Find the moment generating function of $\frac{X}{2}$. (6 marks)

Page 3

ISO 9001:2008 Certified by the Kenya Bureau of Standards

QUESTION FOUR (20MARKS)

a) Suppose that the lifetimes of light bulbs produced in a certain factory are distributed according to the pdf $f(x) = xe^{-x}$, x > 0. Let X_1, X_2, \dots, X_n denote the lifetimes of a random sample of n light bulbs drawn from a factory production. Determine:

i. The joint p.d.f of
$$X_1, ..., X_n$$

ii. $\Pr(X_1 < X_2 < ... < X_n)$ (8 marks)

b) State and prove the central limit theorem

QUESTION FIVE (20MARKS)

a) Suppose that the random vector has the 3-variate distribution given by

$$f(x_1, x_2, x_3) = \frac{20!}{x_1! x_2! x_3! (20 - x_1 - x_2 - x_3)!} \left(\frac{1}{10}\right)^{x_1} \left(\frac{1}{5}\right)^{x_2} \left(\frac{3}{10}\right)^{x_3} \left(\frac{2}{5}\right)^{20 - x_1 - x_2 - x_3}$$

i. Obtain the moment generating function $\frac{X}{2}$ (3 marks)
ii. Determine the marginal distribution of X_2 and X_3 (4 marks)
iii. The conditional mean and variance of X_1 given that $X_2 = X_2$ and $X_3 = X_3$ (5 marks)

b) Suppose that $X_1, X_2, ..., X_n$ is a random sample from a population with mean μ and

variance
$$\sigma^2$$
. Let $Q = \sum_{i=1}^n (X_i - \overline{X})^2$ where $\overline{X} = \frac{\sum_{i=1}^n X_i}{n}$. Show that $E(Q) = (n-1)\sigma^2$

(8 marks)

(12 marks)

END

Cuea/ACD/EXM/MAY – JULY 2019 / MATHEMATICS AND ACTUARIAL SCIENCE