A. M. E. C. E. A
P.O. Box 62157
00200 Nairobi - KENYA
Telephone: 891601-6
MAY - JULY 2019 TRIMESTER
FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE SPECIAL /SUPPLEMENTARY EXAMINATION

ACS 403: FINANCIAL ECONOMICS

Date: JULY 2019
Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions
Q1.
a) What is financial economics?
b) Explain the three forms of the Efficient Markets Hypothesis
c) Discuss the three types of multifactor models of asset returns
d) List any three assumptions of APT
(3 marks)
e) An investor has the choice of the following assets that earn rates of return as follows in each of the four possible states of the world:

State	Probability	Asset 1	Asset 2	Asset 3
1	0.2	5%	5%	6%
2	0.3	5%	12%	5%
3	0.1	5%	3%	4%
4	0.4	5%	1%	7%

Market capitalisation10,000 17,546 82,454
Determine the market price of risk assuming CAPM holds.
Define all terms used.
(8 marks)
f) Why study financial economics in higher education level?
g) An investor is contemplating an investment with a return of $£ R$, where: $R=300,000-500,000 U$ where U is a uniform $[0,1]$ random variable.
Calculate each of the following four measures of risk:
i. variance of return
ii. downside semi-variance of return
iii. shortfall probability, where the shortfall level is Kshs 100,000
iv. Value at Risk at the 5\% level.

Q2. i) Two assets are available for investment. Asset 1 returns a percentage 4 $B \%$, where B is a Binomial random variable with parameters $n=3$ and $p=$ 0.5 . Asset 2 returns apercentage $2 \mathrm{P} \%$, where P is a Poisson random variable with parameter $\mu=3$. Assume a benchmark return of 3%. Calculate the following three measures of investment risk for each asset:
a) Variance
(3 marks)
b) Semi-variance and
(3 marks)
c) Shortfall probability
(4 marks)
ii) An investor can construct a portfolio using only two assets A and B with the following properties:

	A	B
Variance of return	$24 \% \%$	$12 \% \%$

Correlation coefficient between assets 0.25
Derive a formula for and determine the composition of the investor's minimum variance portfolio.
(10 marks)

Q3. a) A market consists of three assets A, B and C. Annual returns on the three assets (RA, RB and RC) have the following characteristics:
Asset Expected return \% Standard deviation \% A $9 \quad 20$
B 6
20
C 3
10
The correlation between the returns are as follows: $\operatorname{Corr}(R A, R B)=-1 / 4$, $\operatorname{Corr}(R B, R C)=-1 / 2$ and $\operatorname{Corr}(R A, R C)=-1 / 2$.
Calculate the variance of the returns of each asset and the covariances between the returns of each pair of assets
b) Explain five properties of Standard Brownian motion

Q4. i) Explain what is meant by self-financing in the context of continuous-time derivative pricing, defining all notation used
(6 marks)
(ii) Define the delta of a derivative, defining all notation and terms used other than those already defined in your answer to (i)
(6 marks)
(iii) Explain how delta and self-financing are used in the martingale approach to valuing derivatives
(8 marks)

Q5. i) State the assumptions underlying the Black-Scholes option pricing formula
(6marks)
A discounted stock price can be written as: $S t=\cosh (\sigma Z t) \exp (-\sigma 2 t)$, where Z tis a standard Brownian motion under the real world measure P. Hint: $\cosh (x)=(e x+e-x) / 2$.
ii) Apply Ito's formula to derive an SDE satisfied by St
(8marks)
iii) Explain why the discounted stock price (under P) is not a martingale
(2 marks)
iv) State the SDE satisfied by St under the equivalent martingale measure
(4 marks)

