THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157

00200 Nairobi - KENYA

MAIN EXAMINATION

Telephone: 891601-6

MAY – JULY 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

SPECIAL / SUPPLEMENTARY EXAMINATION

ACS 201: FUNDAMENTALS OF ACTUARIAL MATHEMATICS II

Date: JULY 2019 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1

A. i. In the context of random variables, define T_x and K_x

2mks

ii. A person is aged exactly 45 years old. Suppose that she dies when she is aged 84 years and 150 days old. What are the values of T_{45} AND K_{45} for this person? **2mks**

B. Define the UDD assumption and hence prove that ${}_{t}q_{x} \ \Box \ tq_{x}$

6 mks

- C. Discuss the three forms of premium frequencies that insurance companies use in their contract pricing **6mks**
- D. Calculate $A_{50:\overline{3}}$

Basis:

Mortality

$$q_{50} = 0.05$$

 $q_{51} = 0.06$

$$q_{_{51+t}}=1.1q_{_{50+t}}$$
 for $t\geq 1$

Interest 6% p.a. 7mks

E. Calculate
$$\ddot{a}_{40:\overline{4}}$$

Basis:

From the following life table extract

Χ	$l_{_{\scriptscriptstyle X}}$
40	100,000
41	99,300
42	98,200
43	96,600
44	94,600

Interest 4.5% per annum

7mks

Q2

A. Pove that

$$A_{[x]} = vq_{[x]} + vp_{[x]}A_{[x]+1}$$

4mks

Hence orotherwise, using AM92 tables at 6% p.a interest, compute

$$A_{[50]+1:9}$$

7mks

B. The table below is part of a mortality table used by a life insurance company to calculate survival probabilities for a special type of life insurance policy.

Х	$l_{[x]}$	$l_{[x]+1}$	$l_{[x]+2}$	$l_{[x]+3}$	l_{x+4}
51	1537	1517	1502	1492	1483
52	1532	1512	1497	1487	1477
53	1525	1505	1490	1480	1470
54	1517	1499	1484	1474	1462
55	1512	1492	1477	1467	1453

- i. Calculate the probability that a policy holder who was accepted for insurance exactly 2 years ago and is now aged exactly 55 will die at age 57 next birthday.
 4 mks
- ii. Calculate the corresponding probability for an individual of the same age who has been a policyholder for many years.
- iii. Comment on your answers to (i) and (ii).

2 mks

A.	Discuss five factors to consider when performing an insurance valuation.	10mks

- B. If T_x and K_x are random variables measuring the complete and curtate future lifetimes, respectively, for a life aged x, write down expressions for the following symbols in terms of expected values.
 - I. A
 - II. A_{1}
 - | A ||||. x:
 - IV. \overline{a}_x
 - V. *ä*_{x:n}

5mks

C. A whole life assurance provides a benefit of 100,000 payable immediately on the death of a male life who is now aged 45 exact.

Calculate, showing all your workings: the EPV of this policy.

Basis:

Mortality AM92 Select

Rate of interest 4% p.a. 5mks

Q4

A. Explain what the following represent:

- $l_{[x-1]+1}$
- ii. d_x 2 mks
- B. Calculate the values for the following functions, assuming AM92 mortality at 4% pa interest:
 - $\ddot{a}_{23:18}$

$$\frac{D_{50}}{D_{40}}a_{5}$$

8 mks

- C. You are given that $P_{80} = 0.888$. Estimate 0.5 P_{80} assuming:
 - i. A uniform distribution of death between integer ages
 - ii. A constant force of mortality between integer ages

4mks

D. Calculate the exact value of $\overline{A_{70:1}}$ assuming the force of mortality is constant between consecutive integer ages.

Basis: Mortality: ELT15 (Males)

Interest: 4.5% per annum

6 mks

Q5

A. Calculate: $^{12}P_{[60]+1}$

Basis: AM92 Mortality

2mks

B. A graph of $f_0(t)$, the probability density function for the random future lifetime, is plotted on the vertical axis, with t plotted on the horizontal axis, for data taken from the English Life Table No. 15(Males)

You are given that $f_0(t) = {}_t p_0 \mu_t$. You observe that the graph rises to a peak at around t=80 and then falls. Explain why the graph falls at around t=80

- C. The mortality of a certain population is governed by the life table function $l_x = 100-x$, $0 \le x < 100$. Calculate the values of the following expressions:
 - i. μ_{30}
 - ii. $^{10}P_{30}$
 - iii. $P(T_{30} > 20)$
 - iv. $P(K_{30} = 20)$
 - v. e₃₀

9mks

D. An assurance contract provides a death benefit of £1,250 payable immediately on death. The following basis is used:

Force of mortality: $\mu_x = 0.045$ for all x

Force of interest: δ = 0.045

Calculate the EPV.

6mks

END