THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

MAY – JULY 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

SPECIAL / SUPPLEMENTARY EXAMINATION

MAT 161: PROBABILITY AND STATISTICS II

Date: JULY 2019Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

QUESTION ONE

	х	0	1	2	3	4
	P(X=x)	k	2k	5k	10k	17k
	Find the value of	of the constant k	. hence compute	$p(1 \le x < 3)$	(5ma	irks)
c)	Let x be a rando	om variable with	probability distr	ibution $P(X=x)$. Prove that:	
j	i. $E(c) = c W$	here <i>c</i> is an arbi [.]	trary constant.		(2m	arks)
i	i. $E(ax+b) =$	$a\mu + b$ Where a	and b is an arbit	rary constant.	(3ma	rks)
e)		indom variable x	off after check ir has pdf given by	, ,		
					(0m	·
		and standard dev	viation of x		(9116	arks)

a) Let x be a random variable with mean $E(X) = \mu$ prove that

Cuea/ACD/EXM/MAY – JULY 2019 / MATHEMATICS AND ACTUARIAL SCIENCE

Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6

--- -- -----

i. $var(X) = E(X - \mu)^2 = E(X^2) - \mu^2$ ii. $var(ax+b) = a^2 var(X)$	(4marks)				
ii. $var(ax+b)=a^2var(X)$	(4marks)				
ii. $var(ax+b) = a^{2}var(X)$ b) Let Y be a random variable with pdf $f(y) = \begin{cases} \frac{3}{64}y^{2}(4-y), 0 \le y \le 4\\ 0 \text{ elsewhere} \end{cases}$					
i. Find the expected value and variance of Y.	(4marks)				
ii. Let $X = 300 Y + 50$ find $E(X)$ and $var(X)$	(2marks)				
iii. Find $p(X>750)$	(4marks)				
c) Write in terms of the moment generating function and its derivatives an expression for					
mean and variance of a random variable. (2	2marks)				
QUESTION THREE					
 A biased coin is tossed 6 times. The probability of head on any toss is 0.3. let x denote the number of heads that come up. Calculate: 					
i. $p(X=3)$	(2marks)				
ii. $p(1 < X \le 5)$	(4marks)				
iii. What is the mean and standard deviation of the heads that turn	ed out? (3marks)				

b) Customers arrive at a checkout counter according to a poisson distribution at an average of 7 per hour. During a given hour, what are the probabilities that:

i.	No more than 3 customers arrive	(5marks)
ii.	At least 2 customers arrive	(4marks)
iii.	Exactly 5 customers arrive	(2marks)

- QUESTION FOUR
 - a) Define moment generating function. (1mark) b) Given that the mgf of a non negative discrete random variable x is $M_x(t) = \left(\frac{2}{3}e^t + \frac{1}{3}\right)^9$ i. State the distribution of x (1mark) ii. Show that $p(X \ge 2) = 1 - 19(3^{-9})$ (3marks) iii. Find E(X) and var(X) (2marks)
 - c) A random variable x has a probability generating function pgf given by $G_x(t) = e^{4(t-1)}$ determine its probability distribution. Hence or otherwise compute $p(X \ge 1)$ (6marks)
 - d) Let x be a discrete random variable with pmf given by

$$f(x) = \begin{cases} \frac{1}{20} (1+x), 0 \le x \le 2\\ 0, elsewhere \end{cases}$$

Determine the cdf of x

(7marks)

QUESTION FIVE

Cuea/ACD/EXM/MAY – JULY 2019 / MATHEMATICS AND ACTUARIAL SCIENCE

Page 2

ISO 9001:2008 Certified by the Kenya Bureau of Standards

a) Consider the joint distribution of x and y given in the form of the table below. The cell (i, j) corresponds to the joint probability that x=i and y=j. (i=1,2,3 j=1,2,3)

			1			1	
			x				
	У		1	2	3		
		1	0	1	1		
				6	6		
		2	1	0	1		
			6		$\left \frac{1}{6} \right $		
		3	1	1	0		
			6	6			
i.	Show that it is	a probability di	istribution			(1mark)	
1.		• •				(IIIdik)	
ii.	ii. Find the marginal probability of x and y. ie $f_x \dot{\iota} f_y$ (2marks)					(2marks)	
iii.						(7marks)	
If x is a random variable with pdf given by $f(x) = \begin{cases} \frac{1}{2\sqrt{3}}, -\sqrt{3} \le x \le \sqrt{3} \\ 0 \text{ elsewhere} \end{cases}$							
0 elsewhere							
Using	Chebyshevs ineq	uality, find the	upper bound	of $p[x-\mu]$	$_{x} \geq 1.5 \delta_{x}] \mathbf{w}$	here and is the mean	
and standard deviation of x respectively. What is the exact probability? (10marks)							

END

b)