

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157

00200 Nairobi - KENYA

MAIN EXAMINATION

Telephone: 891601-6

MAY – JULY 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

SPECIAL / SUPPLEMENTARY EXAMINATION

MAT 204: LINEAR ALGEBRA II

Date: JULY 2019 **Duration: 2 Hours**

INSTRUCTIONS: Answer Question ONE and any other TWO Questions

1. a). Describe a linear mapping.

(3 marks)

- b). Let $L: R_2 \to R_2$ be defined by $L[(u_1, u_2)] = [u_1^2 u_2]$. Is L a linear transformation?
- (6 marks)
- c). State five properties of determinants.

- d). Let $L: R_2 \to R_2$ be the linear operator defined by $L \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} -a_2 \\ a_1 \end{pmatrix}$. Find the Eigen values.
- (5 marks)
- e). State Cayley-Hamilton theorem.

(2 marks)

f). Explain the term invariant subspace.

- (2 marks)
- g). Compute the area of triangle T with vertices [-1,4], $[3,1] \land [2,6]$. (5 marks)
- h). suppose that **u** is a vector in \mathbb{R}^n . Show that $u \pm u = O$.

(2marks)

2. a). Let $L:P_1 \to P_2$ be defined by

$$L[P(t)]=tp(t)$$
, show that L is a linear transformation.

(5 marks)

b). Show that $s = [t^2 + t, t + 1, t - 1]$ is a basis for p_2 under the mapping

$$L: P_2 \to R^3$$
 defined by $L[at^2+bt+c] = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. (7 marks)

c). Let $L: R_4 \to R_2$ be a linear transformation and let $s = [v_1, v_2, v_3, v_4]$ be a basis for R_4 , where

$$v_1 = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}, v_2 = \begin{bmatrix} 0 & 1 & -1 & 2 \end{bmatrix}, v_3 = \begin{bmatrix} 0 & 2 & 2 & 1 \end{bmatrix} \land v_4 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$$
. Suppose that $L(v_1) = \begin{bmatrix} 1 & 2 \end{bmatrix}, L(v_2) = \begin{bmatrix} 0 & 3 \end{bmatrix}, L(v_3) = \begin{bmatrix} 0 & 0 \end{bmatrix}$ and $L(v_4) = \begin{bmatrix} 2 & 0 \end{bmatrix}$. If $v = \begin{bmatrix} 3 & -5 & -5 & 0 \end{bmatrix}$. Find $L[v]$. (7 marks)

- 3. a). Let $L: P_2 \to P_1$ be defined by L[P(t)] = p'(t) and consider the ordered bases $s = [t^2, t, 1]$ and $T[t \ 1]$ for p_2 and p_1 respectively.
 - i. Find the matrix A associated with L. (4 marks)
 - ii. If $p(t)=5t^2-3t+2$, compute L[P(t)] directly and then by using A.(3 marks)
- c). Let $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ and $S = \begin{bmatrix} e_1, e_2, e_3 \end{bmatrix}$ and $T = \begin{bmatrix} \overline{e_1}, \overline{e_2} \end{bmatrix}$ be the natural bases for R^3 and R^2 respectively.
 - i. Find the unique linear transformation $L: \mathbb{R}^3 \to \mathbb{R}^2$ whose representation with respect to **S** and **T** is **A**. (5 marks)
 - ii. Let $S = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ and $T = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ be ordered bases for R^3 and R^2 ,

respectively. Determine the linear transformation $L: \mathbb{R}^3 \to \mathbb{R}^2$ whose representation with respect to S' and T' is A. (5 marks)

- iii. Compute $L\begin{bmatrix}1\\2\\3\end{bmatrix}$, using L as determined in part (ii). (3 marks)
- 4. a). Let $L: P_2 \to P_2$ be a linear operator defined by $L(at^2+bt+c)=-bt-2c$. Find the corresponding matrix Eigen problem for each of the bases $S=[1-t,1+t,t^2]$ and $T=[t-1,1,t^2]$ for p_2 . (10 marks)
 - b). Compute the Eigen values and associated Eigen vectors of

$$A = \begin{bmatrix} 0 & 0 & 3 \\ 1 & 0 & -1 \\ 0 & 1 & 3 \end{bmatrix}. \tag{10 marks}$$

- 5. a). Let $L: R_3 \to R_3$ be defined by $L[(u_1 \ u_2 \ u_3)] = [2u_1 u_3 \ u_1 + u_2 u_3 \ u_3]$. Let S be a natural basis for R_3 . Find matrix representation of L with respect to S. Also let $S' = [(1 \ 0 \ 1), (0 \ 1 \ 0), (1 \ 1 \ 0)]$ be natural basis for R_3 . Show that L is a diagonalizable linear transformation with respect to S'. (18 marks)
 - b). Explain orthogonal matrix and give an example.

(2 marks)

END