A. M. E. C. E. A
P.O. Box 62157
00200 Nairobi - KENYA
Telephone: 891601-6
MAY - JULY 2019 TRIMESTER
FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE
SPECIAL / SUPPLEMENTARY EXAMINATION

MAT 204: LINEAR ALGEBRA II

Date: JULY 2019

Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions

1. a). Describe a linear mapping.
b). Let $L: R_{2} \rightarrow R_{2}$ be defined by $L\left[\left(u_{1}, u_{2}\right)\right]=\left[u_{1}^{2} 2 u_{2}.\right]$ Is L a linear transformation?
(6 marks)
c). State five properties of determinants.
(5 marks)
d). Let $L: R_{2} \rightarrow R_{2}$ be the linear operator defined by $L\binom{a_{1}}{a_{2}}=\binom{-a_{2}}{a_{1}}$. Find the Eigen values.
(5 marks)
e). State Cayley-Hamilton theorem.
(2 marks)
f). Explain the term invariant subspace.
(2 marks)
g). Compute the area of triangle T with vertices $(-1,4),(3,1) \wedge(2,6)$. (5 marks)
h). suppose that \mathbf{u} is a vector in R^{n}. Show that $u \pm u=O$.
(2marks)
2. a). Let $L: P_{1} \rightarrow P_{2}$ be defined by
$L[P(t)]=t p(t)$, show that $\quad \mathrm{L}$ is a linear transformation. (5 marks)
b). Show that $s=\left|t^{2}+t, t+1, t-1\right|$ is a basis for p_{2} under the mapping
$L: P_{2} \rightarrow R^{3}$ defined by $L\left\{a t^{2}+b t+c\right\}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$.
c). Let $L: R_{4} \rightarrow R_{2}$ be a linear transformation and let $s=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ be a basis for R_{4}, where
$v_{1}=\left[\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right], v_{2}=\left[\begin{array}{llll}0 & 1 & -1 & 2\end{array}\right], v_{3}=\left[\begin{array}{llll}0 & 2 & 2 & 1\end{array}\right] \wedge v_{4}=\left[\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right]$. Suppose that $L\left(v_{1}\right)=\left[\begin{array}{ll}1 & 2\end{array}\right], L\left(v_{2}\right)=\left[\begin{array}{ll}0 & 3\end{array}\right], L\left(v_{3}\right)=\left[\begin{array}{ll}0 & 0\end{array}\right] \operatorname{and} L\left(v_{4}\right)=\left[\begin{array}{ll}2 & 0\end{array}\right]$. If $v=\left[\begin{array}{llll}3 & -5 & -5 & 0\end{array}\right]$. Find $L[v]$. (7 marks)
3. a). Let $L: P_{2} \rightarrow P_{1}$ be defined by $L[P(t)]=p^{\prime}(t)$ and consider the ordered bases $s=\left\{t^{2}, t, 1\right\}$ and $T\left[\begin{array}{ll}t & 1\end{array}\right]$ for p_{2} and p_{1} respectively.
i. Find the matrix A associated with L .
ii. If $p(t)=5 t^{2}-3 t+2$, compute $L[P(t)]$ directly and then by using \mathbf{A}.(3 marks)
c). Let $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & -1 & 3\end{array}\right]$ and $S=\left\{e_{1}, e_{2}, e_{3}\right\}$ and $T=\left\{\overline{e_{1}}, \overline{e_{2}}\right\}$ be the natural bases for R^{3} and R^{2} respectively.
i. Find the unique linear transformation $L: R^{3} \rightarrow R^{2}$ whose representation with respect to \mathbf{S} and \mathbf{T} is \mathbf{A}.
(5 marks)
ii. Let $S^{\prime}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ and $T^{\prime}=\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{c}2 \\ -1\end{array}\right]\right\}$ be ordered bases for R^{3} and R^{2}, respectively. Determine the linear transformation $L: R^{3} \rightarrow R^{2}$ whose representation with respect to S^{\prime} and T^{\prime} is \mathbf{A}.
(5 marks)
iii. Compute $L\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right.$, using L as determined in part (ii).
4. a). Let $L: P_{2} \rightarrow P_{2}$ be a linear operator defined by $L\left(a t^{2}+b t+c\right)=-b t-2 c$. Find the corresponding matrix Eigen problem for each of the bases $S=\left\{1-t, 1+t, t^{2}\right\}$ and $T=\left\{t-1,1, t^{2}\right\}$ for p_{2}.
(10 marks)
b). Compute the Eigen values and associated Eigen vectors of

$$
A=\left[\begin{array}{ccc}
0 & 0 & 3 \tag{10marks}\\
1 & 0 & -1 \\
0 & 1 & 3
\end{array}\right]
$$

5. a). Let $L: R_{3} \rightarrow R_{3}$ be defined by $L\left[\left(\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right)\right]=\left[\begin{array}{lll}2 u_{1}-u_{3} & u_{1}+u_{2}-u_{3} & u_{3}\end{array}\right]$. Let S be a natural basis for R_{3}. Find matrix representation of L with respect to S . Also let $S^{\prime}=\left\{\left(\begin{array}{lll}1 & 0 & 1\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)\right\}$ be natural basis for R_{3}. Show that L is a diagonalizable linear transformation with respect to S^{\prime}.
b). Explain orthogonal matrix and give an example.
