

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157

00200 Nairobi - KENYA

MAIN EXAMINATION

Telephone: 891601-6

MAY – JULY 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

SPECIAL / SUPPLEMENTARY EXAMINATION

MAT 107: LINEAR ALGEBRA I

Date: JULY 2019 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any other TWO Questions

1. a). Given the system

$$\begin{cases} \frac{1}{y} + \frac{1}{x} - \frac{1}{z} = 0 \\ \frac{2}{x} - \frac{2}{y} + \frac{1}{z} = 3 \\ \frac{3}{x} - \frac{4}{y} + \frac{2}{z} = 4 \end{cases}$$

i. Find the rank.

(5 marks)

ii. State the nature of the system.

(2 marks)

b). If a and b are any scalars, and u and v any vectors in V, Show that

i.
$$(a+b)u=au+bv.(3 \text{ marks})$$

ii.
$$a(u+v)=au+av$$
.

(3 marks)

iii. u+o=u.

(3 marks)

c). Determine if $w = [x, -10, z; x, z, \epsilon R]$ is a subspace of R^3 .

(3 marks)

d). Let
$$v_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$. Determine whether the vector $\mathbf{v} = \begin{pmatrix} 1 \\ 5 \\ -7 \end{pmatrix}$ belongs to span

 $(\boldsymbol{v}_1, \boldsymbol{v}_2).$

(5 marks)

e). Let
$$L: \mathbb{R}^3 \to \mathbb{R}^3$$
 be defined by $L \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} u_1 + 1 \\ 2u_2 \\ u_3 \end{pmatrix}$. Determine whether L is a linear

transformation. (6 marks)

2. a) Let $R^3 \rightarrow R^3$ be defined by

$$L \begin{vmatrix} u_1 \\ u_2 \\ u_3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{vmatrix} \begin{vmatrix} u_1 \\ u_2 \\ u_3 \end{vmatrix}$$

i. Is L onto? (5 marks)

- ii. Find a basis for the range L and determine the dimension of the range. (5 marks)
- iii. Find Kernel L. (5 marks)
- iv. Is L one to one? (1 mark)

b). Let $L: P_2 \to R$ be the linear transformation defined by

$$L(a^2+bt+c) = \int_0^1 (at^2+bt+c)dt. \text{ Find } kerL.$$
 (4 marks)

3. a). Let $v_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. Show that vector $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$ is a linear combination in \mathbb{R}^3 .

(5 marks)

- b). In p_2 , let $v_1 = 2t^2 + t + 2$, $v_2 = t^2 2t$, $v_3 = 5t^2 5t + 2$ and $v_4 = -t^2 3t 2$. Determine whether the vectors $v = t^2 + t + 2$ belongs to span $[v_1, v_2, v_3, v_4]$. (5 marks)
- c). Are the vectors $v_1 = \begin{bmatrix} 1 & 0 & 1 & 2 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 & 1 & 1 & 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 & 1 & 1 & 3 \end{bmatrix}$ in \mathbb{R}^4 are linearly dependent or linearly independent? (5 marks)
- d). Determine whether the vectors

$$v_1 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$
 and $v_3 = \begin{bmatrix} 0 & -3 \\ -2 & 1 \end{bmatrix}$ in M_{22} are linearly independent?

(5 marks)

4. a).(i)Show that the set $S = [t^2 + 1, t - 1, 2t + 2]$ is a basis for the vector space p_2 .

(5 marks)

- (ii). Suppose $p_2=2t^2+6t+13$. Show that S is a basis for p_2 .(5 marks)
- b). The set W of all 2 by 2 matrices with trace equal to zero is a subspace of M_{22} . Show that the set $S = [v_1, v_2, v_3]$, where

$$v_1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, v_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \text{ and } v_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ is a basis for W.}$$
 (6 marks)

c). Distinguish between the following

- i. finite and infinite dimensional vector space. (2 marks)
- ii. Natural basis and rank of a matrix. (2 marks)
- 5. a). Let $L: R_4 \to R_3$ be defined by

$$L[u_1 \ u_2 \ u_3 \ u_4] = [(u_1 + u_2), (u_3 + u_4), (u_1 + u_3)]$$
. Find a basis for range L. (5 marks)

b). Do the four vectors
$$v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$
 and $v_4 = \begin{bmatrix} 3 \\ 1 \\ -1 \\ 0 \end{bmatrix}$ spans R^4 ?

c). Find a basis for the solution space of the homogeneous system $(\xi I_3 - A)X = 0$ for

$$\varepsilon = -2 \text{ and } A = \begin{bmatrix} -3 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}. \tag{7 marks}$$

END

(8 marks)