

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25

SEPTEMBER – DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

REGULAR PROGRAMME

CHEM 201: PHYSICAL CHEMISTRY II

Date: DECEMBER 2021	Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any TWO Questions	

Useful Information

 $R=8.3145 Jk^{-1} mol^{-1}$ $1 atm = 101325 N/m^2$

Using the 1st and 2nd laws of thermodynamics, show that: Q1. a)

$$\Delta s = CvInT + RInV$$

(7

marks)

- One mol of an ideal gas at 25°c was allowed to expand isothermally and b) reversibly from 1080.25 KPa to 10.8025kPa against a pressure that was gradually reduced. Calculate
 - the work done. (3 marks) (i) ΔE , ΔH and Q (ii) (6 marks) (6
 - Δs and ΔG (iii)

marks)

- Briefly define the following terms as used in thermodynamics. C)
 - state variables (i)
 - extensive properties (ii)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING Page 1

ISO 9001:2015 Certified by the Kenya Bureau of Standards

entropy (iii)

(iv) reversible process

(8 marks)

$$\Delta H^{o}_{r,T} = \Delta H^{o}_{r,298} + \left(\int_{298}^{T} (C_{p,P} - C_{pR}) dT \right)$$

(10 marks)

- b) Using a carnot cycle show that entropy is a state function. (10 marks)
- Q3. Briefly discuss how the change in temperature affects the spontaneity of a a) given reaction. (8

marks)

Calculate the temperature at which it is thermodynamically possible for b) carbon to reduce iron (iii) oxide to iron under standard conditions by the $2Fe_2O_{3_{[s]}} + 3C_{[s]} \rightarrow 4Fe_{[s]} + 3CO_{2_{[c]}}$ endothermic reaction.

Component	$\Delta H_f K j n$	nol ⁻¹ S°/Jmol	^{-1}k
$Fe_2O_{3_{(s)}}$	-824.2	89.4	
$C_{(s)}$	0	5.7	
$Fe_{(s)}$	0	27.3	
$CO_{2_{[G]}}$	-393.5	213.7	

(8 marks)

- Calculate the work done when 1.5 mol of a gas expands from 10dm³ to C) 15dm³ against a constant pressure of 1 atmosphere.
- Q4. Plot on the some graph the variation of absolute entropy versus a) (i) temperature for H_2 and CH_3CI in the range 0k to 300k. (6 marks) Explain the variation for the graph in (i). (4 marks)
 - (ii)
 - b) Liquid water at 373k is in equilibrium with water vapour at 1 atm pressure ΛH

if
$$\frac{211}{vap}$$
 at 373k in 40.60kj mol⁻¹. Calculate

(i) ΔG and ΔS

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING Page 2

ISO 9001:2015 Certified by the Kenya Bureau of Standards

(ii) Suppose the water vapour pressure is 0.900 atm. What are the values of ΔG and ΔS for the vapourization process? (6

marks)

- Q5. a) Consider the system $M_{(g)} \longrightarrow N_{(g)}$ at 25°c. Given that $G^{^{0}M} = 8996 Jmol^{-1}$ and $G^{^{0}N} = 11718 Jmol^{-1}$, Calculate the value of the equilibrium constant for this reaction. (6 marks)
 - b) Calculate the equilibrium pressure that results if 1.00mol $M_{(g)}$ at 1.00 atm and 1.00 mol $N_{(g)}$ at 1.00 atm are mixed together at 25°c. (8 marks)
 - c) Given that G= H-TS, E = Q + W and H = E+PV. Show that for 1 mol of an ideal gas dG = Vdp-SdT. (6 marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING Page 4

ISO 9001:2015 Certified by the Kenya Bureau of Standards

END