THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A
MAIN EXAMINATION
P.O. Box 62157
00200 Nairobi - KENYA
Telephone: 891601-6
Ext 1022/23/25

SEPTEMBER -DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

REGULAR PROGRAMME

CHEM 201: PHYSICAL CHEMISTRY II

Date: DECEMBER 2021	Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any TWO Questions	

Useful Information

$$
\begin{aligned}
& R=8.3145 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1} \\
& 1 \mathrm{~atm}=101325 \mathrm{~N}^{2} \mathrm{~m}^{2}
\end{aligned}
$$

Q1. a) Using the $1^{\text {st }}$ and $2^{\text {nd }}$ laws of thermodynamics, show that:

$$
\Delta s=C v \operatorname{In} T+R \operatorname{In} V
$$

marks)
b) One mol of an ideal gas at $25^{\circ} \mathrm{c}$ was allowed to expand isothermally and reversibly from 1080.25 KPa to 10.8025 kPa against a pressure that was gradually reduced. Calculate
(i) the work done.
(ii) $\Delta E, \quad \Delta H$ and Q (6 marks)
(iii) Δs and ΔG
marks)
c) Briefly define the following terms as used in thermodynamics.
(i) state variables
(ii) extensive properties

> (iii) entropy
(iv) reversible process

Q2. a) Using the pathways or otherwise derive the Kirchoff's equation

$$
\Delta H_{r, T}^{o}=\Delta H_{r, 298}^{o}+\left(\int_{298}^{T}\left(C_{p, P}-C_{p R}\right) d T\right)
$$

b) Using a carnot cycle show that entropy is a state function. (10 marks)

Q3. a) Briefly discuss how the change in temperature affects the spontaneity of a given reaction.
marks)
b) Calculate the temperature at which it is thermodynamically possible for carbon to reduce iron (iii) oxide to iron under standard conditions by the endothermic reaction.

$$
2 \mathrm{Fe}_{2} \mathrm{O}_{3_{(s)}}+3 \mathrm{C}_{(s)} \rightarrow 4 \mathrm{Fe}_{(s)}+3 \mathrm{CO}_{2_{|G|}}
$$

Component	$\Delta H_{f} / \mathrm{Kjmol}^{-1}$	$\mathbf{S} / \mathrm{Jmol}^{-1} k$
$\mathrm{Fe}_{2} \mathrm{O}_{3_{(s)}}$	-824.2	89.4
$\mathrm{C}_{(S)}$	0	5.7
$\mathrm{Fe}_{(s)}$	0	27.3
$\mathrm{CO}_{2_{[G]}}$	-393.5	213.7

c) Calculate the work done when 1.5 mol of a gas expands from $10 \mathrm{dm}^{3}$ to $15 \mathrm{dm}^{3}$ against a constant pressure of 1 atmosphere.

Q4. a) (i) Plot on the some graph the variation of absolute entropy versus temperature for H_{2} and $\mathrm{CH}_{3} \mathrm{Cl}$ in the range 0 k to 300k. (6 marks)
(ii) Explain the variation for the graph in (i).
b) Liquid water at 373 k is in equilibrium with water vapour at 1 atm pressure if $\Delta H_{v a p}$ at 373 k in $40.60 \mathrm{kj} \mathrm{mol}^{-1}$. Calculate
ΔG and ΔS
(ii) Suppose the water vapour pressure is 0.900 atm . What are the values of ΔG and ΔS for the vapourization process?
marks)
Q5. a) Consider the system ${ }^{M_{(g)}} \rightleftharpoons \mathrm{N}_{(\mathrm{g})}$ at 25° c. Given that
$G^{0}{ }^{M}=8996 \mathrm{Jmol}^{-1}$ and $G^{0}{ }^{N}=11718 \mathrm{Jmol}^{-1} \quad$, Calculate the value of the equilibrium constant for this reaction.
b) Calculate the equilibrium pressure that results if $1.00 \mathrm{~mol}_{(\mathrm{g})}$ at 1.00 atm and $1.00 \mathrm{~mol} \mathrm{~N}_{(\mathrm{g})}$ at 1.00 atm are mixed together at $25^{\circ} \mathrm{c}$.
(8 marks)
c) Given that $G=H-T S, E=Q+W$ and $H=E+P V$. Show that for 1 mol of an ideal gas dG = Vdp-SdT.
(6 marks)

