THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6

--- -- -----

MAY – JULY 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER AND LIBRARY SCIENCE

SPECIAL / SUPPLEMENTARY EXAMINATION

CMT 201: LOGIC CIRCUITS

Date: JULY 2019Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1	a)	Simplify: $(A.B.(C+\overline{B.D})+\overline{A.B}).C.D$	(4 marks)
	b)	State the three notational methods for describing the behavior of circuits	gates and (3 marks)
	c)	State the three representations of an XOR gate	(3 marks)
	d)	Verify DeMorgan's law	(3 marks)
	-)	Duran a singuit dia mana ao manana dia 2 to the fallowing Daslage au	

e) Draw a circuit diagram corresponding to the following Boolean expression; $(\overline{BC}) + \overline{(AB + \overline{C})}$ (3 marks)

f)

g) Consider the K-map shown in Figure 1.

00	01	11	10				
0	0	1	0				
1	1	0	1				
Figure 1							

State, in short hand notation, the

Cuea/ACD/EXM/MAY – JULY 2019 / COMPUTER / LIBRARY SCIENCE

Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

		(i)	Minterm	(3 marks)	
		(ii)	Maxterm	(3 marks)	
	h)	Convert			
		(i)	decimal number 853 to Excess-3	(1 mark)	
		(ii)	7CH to its octal equivalent	(1 mark)	
		(iii) (iv)	decimal number 59.72 to its BCD hexadecimal number 14B16to its binary equivalent	(1 mark) (1 mark)	
Q2	i) a)	•	n01) ₂ = (33) _r . Find both <i>n</i> and <i>r</i> . ider the function: $Y = AB + (\overline{AC})$. \overline{B}	(4 marks)	
		(i) Draw a combinational logic circuit that implements this function (3			
	b)	(ii) (iii) (iv) A con	marks) Draw a truth table for this function Write a sum-of-products representation of Y Write a product-of-sums representation of Y mbinational circuit has 3 inputs A, B, C and output F.	(3 marks) (2 marks) (2 marks)	
			F is true for following input combinations:		
			A is False, B is True.		
			A is False, C is True.		
			A, B, C are False.		
			A, B, C are True.		
		Use the convention True=1 and False = 0			
		(i) (ii)	draw the Truth table for F Write the simplified expression for F in SOP form using	(4 marks)	
			Karnaugh map.	(6 marks)	
Q3	a)	Simpl	lify the following Boolean expressions using a Karnaugh ma	ар.`	
			(<i>A</i> , <i>B</i> , <i>C</i> , <i>D</i>)=(<i>C</i> +D') + <i>ACD</i> + <i>ABC</i> + <i>ABCD</i> + <i>ACD</i> (8 marks)		
	b)	Using	g minterms, show that		
			$\overline{a}.c + \overline{b}.\overline{c} + a.b = \overline{a}.\overline{b} + b.c + a.\overline{c}$	(5 marks)	

ISO 9001:2008 Certified by the Kenya Bureau of Standards

c) Design a combinational logic circuit that converts 4 bits binary to gray code (7

marks)

b) Simplify the Boolean expression using Boolean laws hence verify using a truth table

$$f(w, x, y) = w\overline{x}y + wx + w\overline{y} + wx\overline{y}$$
 (7 marks)

- c) Design a combinational logic circuit (include block diagram and truth table) that performs arithmetic operation for adding three bits? (7 marks)
- Q5 a) Draw a circuit that will satisfy the following conditions; A combinational

feedback paths, one input x and one output z, 2 secondary variables y_1 and y_2 and 2 excitation variables Y1, Y2 such that the logic equations for the excitation variables in terms of the circuit input and secondary variables are

Y1 =
$$xy_1 + \overline{x} y_2$$
, Y2 = $x \overline{y}_1 + \overline{x} y_2$ and that Z = $\overline{Y} 1.Y2$ (10)

marks).

b) Design a combinational logic circuit that compares two, 2 bits binary numbers X and Y (10 marks)

END

Cuea/ACD/EXM/MAY – JULY 2019 / COMPUTER / LIBRARY SCIENCE

Page 3

ISO 9001:2008 Certified by the Kenya Bureau of Standards