A. M. E. C. E. A
MAIN EXAMINATION
P.O. Box 62157
00200 Nairobi - KENYA
Telephone: 891601-6
MAY - JULY 2019 TRIMESTER
FACULTY OF SCIENCE
DEPARTMENT OF COMPUTER AND LIBRARY SCIENCE
SPECIAL / SUPPLEMENTARY EXAMINATION

CMT 201: LOGIC CIRCUITS

Date: JULY 2019
 Duration: 2 Hours
 INSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1
a) Simplify: $(A \cdot B \cdot(C+\overline{B \cdot D})+\overline{A \cdot B}) \cdot C \cdot D$
b) State the three notational methods for describing the behavior of gates and circuits
c) State the three representations of an XOR gate
d) Verify DeMorgan's law
(3 marks)
e) Draw a circuit diagram corresponding to the following Boolean expression;
$(\overline{B C})+(A B+\bar{C})$
f)
g) Consider the K-map shown in Figure 1.

00	01	11	10

0	0	1	0
1	1	0	1

Figure 1
State, in short hand notation, the

(i)	Minterm	(3 marks)
(ii)	Maxterm	(3 marks)

h) Convert
(i) decimal number 853 to Excess-3
(ii) 7 CH to its octal equivalent
(iii) decimal number 59.72 to its BCD
(iv) hexadecimal number 14B16to its binary equivalent
i) If $(10 \mathrm{n} 01)_{2}=(33)$ r. Find both n and r.

Q2 a) Consider the function: $Y=A B+(\overline{A C}) \cdot \bar{B}$
(i) Draw a combinational logic circuit that implements this function.
marks)
(ii)

Draw a truth table for this function
(3 marks)
(iii)

Write a sum-of-products representation of Y
(2 marks)
Write a product-of-sums representation of Y
(2 marks)
b) A combinational circuit has 3 inputs A, B, C and output F.
F is true for following input combinations:
A is False, B is True.
A is False, C is True.
A, B, C are False.
A, B, C are True.
Use the convention True=1 and False $=0$
(i) draw the Truth table for F
(ii) Write the simplified expression for F in SOP form using Karnaugh map.
a) Simplify the following Boolean expressions using a Karnaugh map.
$(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})=\left(\boldsymbol{C}+\mathrm{D}^{\prime}\right)+\overline{\boldsymbol{A C}} \bar{D}+\boldsymbol{A B C} \overline{\boldsymbol{A B C}} \bar{D}+\boldsymbol{A C D}$ (8 marks)
b) Using minterms, show that

$$
\bar{a} \cdot c+\bar{b} \cdot \bar{c}+a \cdot b=\bar{a} \cdot \bar{b}+b \cdot c+a \cdot \bar{c}
$$

c) Design a combinational logic circuit that converts 4 bits binary to gray code marks)

Q4 a) Determine the number of gates required to minimize the Boolean function $Y=A B+C D$ using only 2 input NAND gates
b) Simplify the Boolean expression using Boolean laws hence verify using a truth table

$$
\begin{equation*}
f(w, x, y)=w \bar{x} y+w x+w \bar{y}+w x \bar{y} \tag{7marks}
\end{equation*}
$$

c) Design a combinational logic circuit (include block diagram and truth table) that performs arithmetic operation for adding three bits?
(7 marks)

Q5 a) Draw a circuit that will satisfy the following conditions; A combinational feedback paths, one input x and one output $z, 2$ secondary variables y_{1} and y_{2} and 2 excitation variables Y1, Y2 such that the logic equations for the excitation variables in terms of the circuit input and secondary variables are

$$
\begin{equation*}
\mathrm{Y} 1=\mathrm{xy}_{1}+\bar{x} y_{2}, \mathrm{Y} 2=x \bar{y}_{1}+\bar{x} y_{2} \text { and that } \mathrm{Z}=\bar{Y} 1 . Y 2 \tag{10}
\end{equation*}
$$

marks).
b) Design a combinational logic circuit that compares two, 2 bits binary numbers X and Y
(10 marks)
END

