

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

....

~ . . .

MAY - AUGUST 2019 TRIMESTER

FACULTY OF COMMERCE

DEPARTMENT OF ACCOUNTING AND FINANCE

EVENING PROGRAMME

CMS 211: INTRODUCTION TO BUSINESS STATISTICS

Date: JULY 2019	L	ouration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any ot	ner TWO Ques	stions
Q1. a) Two workers on the same job show the followir time.	ig results over	a long period of
	Worker	Worker
	~	
Mean time of completing the job (minutes)	30	25
Standard deviation (minutes)	6	4

i) Which worker appears to be more consistent in the time he requires to complete the job? Explain.

(10 MARKS)

- ii) Which worker appears to be faster in completing the job? Explain. (10 marks)
- b) Suppose the manager of a plant is concerned with the total number of manhours lost due to accidents for the past 12 months. The company statistician has reported the mean number of man-hours lost per month but did not keep a record of the total sum. Should the manager order the study repeated to obtain the desired information? Explain your answer clearly. (10 marks)

Q2.	The data below	show the	earnings per	day (in	shillings)	of 50 c	asual workers.
-----	----------------	----------	--------------	---------	------------	---------	----------------

236	283	222	249	265
263	221	224	228	217
204	293	259	266	296
283	242	288	238	215

Cuea/ACD/EXM/JULY 2019/Commerce Page 1

240	283	226	296	245
291	211	219	212	264
207	268	245	263	284
238	274	254	251	237
263	206	248	277	238
264	253	291	281	269

Required:

- a) A grouped frequency table starting with class 200 209, and using a class width of 10. (6 marks)
- b) Use the frequency distribution to compute
 - i) The meanii) The standard deviation

(5 marks)

(5 marks)

iii) Determine the coefficient of skewness. (use the frequency table).

(4 MARKS)

(4 marks)

Q3. The frequency distribution below is a summary of gross profits (in £'000) for various companies. The period considered is the first three months of the current financial year.

Profits	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
(£.000) No. of	6	8	12	18	25	16	8	5	2
companies									

The common class width is 10

- **a)** Determine the Arithmetic mean
- **b)** Determine the mode
- c) Determine the median.
- d) Determine the values of Q_1 and Q_3 .

(5	marks)
(5	marks)
(5	marks)

(5 marks)

Q4. The following data was extracted from a document prepared by company Z.

Salary	7500 - 17500	17500 - 27500	27500 - 37500	37500 - 47500	47500 - 57500
group Kshs					
No. of	40	67	113	25	5
employees					

Let $d_i = \frac{x - 32,500}{10,000}$

Determine \overline{d} and use it to work out the mean salary of the employees.

CMS 211 INTRODUCTIONS TO BUSINESS STATISTICS FORMULAE

MEASURES OF CENTRAL TENDENCY 1. ARITHMETIC MEAN

ARITHMETIC MEAN

$$\ddot{X} = \frac{1}{N} \sum_{i=1}^{n} X$$

$$\ddot{X} = \frac{1}{N} \sum_{i=1}^{n} x_{i} f_{i}$$

 $\ddot{X} = h\bar{d} + A$ 2. MODE $M_0 = L_1 + \frac{\Delta 1C}{\Delta 1 + \Delta 2}$

$$M_0 = L_1 + \frac{(fm-f1)c}{(fm-f1)+(fm-f2)}$$

3. MEDIAN

Median = $\frac{n+1}{2}$

$$Median = \frac{\frac{1}{2} \frac{nth}{2}}{\left[\frac{n}{2} tem + \frac{n+2th}{2} tem\right]}$$

$$M_{\rm D} = L_1 + \frac{c_2 - L_3}{\rm fmd}$$

4. QUARTILES

$$Q_1 = L_{Q1} + \frac{\left(\frac{N}{4} - \sum fQ - 1\right)C}{fQ}$$
$$\left(\frac{BN}{4} - \sum fQ - 1\right)C$$

$$Q_3 = L_{Q3} + \frac{fQ}{fQ}$$

MEASURES OF DISPERSION/VARIABILITY

- 1. RANGE Range = Largest value (L) – Smallest value (S) Coefficient of Range = $\frac{L-S}{L+S}$ X 100
- 2. THE QUARTILE DEVIATION (Q) Interquartile range = $Q_3 Q_1$

Cuea/ACD/EXM/JULY 2019/Commerce Page 3

Quartile Deviation = $\frac{1}{2}(Q_3 - Q_1)$

Coefficient of Quartile Deviation = $\frac{Q3-Q1}{Q3+Q1}$ X 100

3. THE MEAN DEVIATION (MD) $\frac{1}{2}$

$$MD = \sqrt[N]{|x_i - \ddot{x}|}$$
$$MD = \sqrt[N]{|x_i - \ddot{x}|}f_i$$

Coefficient of Mean Deviation = Mean X 100

Mean Deviation

4. VARIANCE (S²) $S^{2} = \frac{1}{N} \sum (x_{i} - \ddot{X})^{2}$ $S^{2} = \frac{1}{N} \sum (x_{i} - \ddot{X})^{2} f_{i}$ $S^{2} = \frac{(\frac{1}{N} \sum x_{i}^{2} f_{i}) - \ddot{X}^{2}}{(\frac{1}{N} \sum x_{i}^{2} f_{i}) - \ddot{X}^{2}}$

$$S^{2} = \frac{(\frac{1}{N}\sum x_{i}^{2}) - \ddot{X}^{2}}{S^{2}}$$

$$S_x^2 = h^2 S_d^2$$

5. STANDARD DEVIATION (S) S = $\sqrt{\frac{1}{N}} \sum (x_i - \ddot{X})^2$

$$= \sqrt{N} \sum (\mathbf{x}_i \cdot$$

$$S = \sqrt{\frac{1}{N}} \sum (x_i - \ddot{X})^2 f_i$$

$$S = \sqrt[n]{\left(\frac{1}{N}\sum x_i^2 f_i\right)} - \ddot{X}^2$$

$$S = \frac{\sqrt{(\frac{1}{N}\sum x_i^2)} - \ddot{X}^2}{\sum x_i^2} - \ddot{X}^2$$

 $S_x = hS_d$

Coefficient of Variability (CV) = Arithmetic mean x 100

6. COMBINED MEAN (\ddot{X}_{c}) AND COMBINED STANDARD DEVIATION (S_{c}) $\ddot{X}_{c} = \frac{1}{N} \sum N_{i} \ddot{X}$

$$S_{c} = \frac{\sqrt{\frac{1}{N}}}{N} \sum N_{i}(S_{i}^{2} + d_{i}^{2})$$

7. CORRELATION AND REGRESSION

Covariance $(cov_{(xy)} \text{ or } S_{xy}) = \frac{1}{N} \sum (x_i - \ddot{X})(y_i - \dot{Y})$

$$cov_{(xy)}$$
 or $S_{xy} = \left(\frac{1}{N}\sum x_i y_i\right) - \ddot{X}\dot{Y}$

Coefficient of Correlation $(r_{xy}) = \frac{Sxy}{SxSy}$

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2}\sqrt{n(\sum y^2) - (\sum y)^2}}$$

Rank correlation coefficient or spearman's rank correlation coefficient (rs)

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

Kendall Rank correlation

$$\tau = \frac{n_c - n_d}{\frac{1}{2}n(n-1)}$$

Pearson r correlation

$$r = \frac{N \sum xy - \sum (x)(y)}{\sqrt{N \sum x^2} - \sum (x^2)\left[N \sum y^2 - \sum (y^2)\right]}$$

Method of least squares
$$\sum y = na + b\sum x_i$$

$$\sum y_i x_i = a\sum x_i + b\sum x_i^2$$

$$\sum x_i = na + b\sum y_i$$

$$\sum x_i y_i = a\sum y_i + b\sum y_i^2$$

$$b = \frac{n(\sum XY) - (\sum X)(\sum Y)}{n(\sum X^2) - (\sum X)^2}$$

$$a = \frac{(\sum Y) - b(\sum X)}{n}$$

$$LSMA = a + bX$$

$$b = r_{xy} - \frac{Sy}{Sx} \qquad a = \dot{Y} - b\ddot{X}$$

END