

Date: JULY 2019
Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions
Q1. a) Two workers on the same job show the following results over a long period of time.

time.	Worker A	Worker B
Mean time of completing the job (minutes)	30	25
Standard deviation (minutes)	6	4

i) Which worker appears to be more consistent in the time he requires to complete the job? Explain.
(10 MARKS)
ii) Which worker appears to be faster in completing the job? Explain. (10 marks)
b) Suppose the manager of a plant is concerned with the total number of manhours lost due to accidents for the past 12 months. The company statistician has reported the mean number of man-hours lost per month but did not keep a record of the total sum. Should the manager order the study repeated to obtain the desired information? Explain your answer clearly.
(10 marks)

Q2. The data below show the earnings per day (in shillings) of 50 casual workers.
236283222249265
$\begin{array}{lllll}263 & 221 & 224 & 228 & 217\end{array}$
204293259266
$283242 \quad 288 \quad 238 \quad 215$

240	283	226	296	245
291	211	219	212	264
207	268	245	263	284
238	274	254	251	237
263	206	248	277	238
264	253	291	281	269

Required:
a) A grouped frequency table starting with class $200-209$, and using a class width of 10.
(6 marks)
b) Use the frequency distribution to compute
i) The mean
(5 marks)
ii) The standard deviation
(5 marks)
iii) Determine the coefficient of skewness. (use the frequency table).
(4 MARKS)
(4 marks)
Q3. The frequency distribution below is a summary of gross profits (in $£^{\prime} 000$) for various companies. The period considered is the first three months of the current financial year.

Profits $\left(£^{\prime} 000\right)$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
No. of companies	6	8	12	18	25	16	8	5	2

The common class width is 10
a) Determine the Arithmetic mean
(5 marks)
b) Determine the mode
c) Determine the median.
d) Determine the values of Q_{1} and Q_{3}.

Q4.The following data was extracted from a document prepared by company Z.

Salary group Kshs	$7500-17500$	$17500-27500$	$27500-37500$	$37500-47500$	$47500-57500$
No. of employees	40	67	113	25	5

Let $\mathrm{d}_{\mathrm{i}}=\frac{x-32,500}{12,000}$
Determine \bar{d} and use it to work out the mean salary of the employees.

CMS 211 INTRODUCTIONS TO BUSINESS STATISTICS FORMULAE

MEASURES OF CENTRAL TENDENCY

1. ARITHMETIC MEAN
$\ddot{\mathrm{X}}=\frac{1}{N} \sum_{i=1}^{n} X$,
$\ddot{\mathrm{X}}=\frac{1}{N} \sum_{i=1}^{n} x_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$\ddot{\mathrm{X}}=\mathrm{h} đ+\mathrm{A}$
2. MODE
$M_{0}=L_{1}+\frac{\Delta 1 C}{\Delta 1+\Delta 2}$
$M_{0}=L_{1}+\frac{(f m-f 1) c}{(f m-f 1)+(f m-f 2)}$
3. MEDIAN

Median $=\frac{n+1}{2}$
Median $=\frac{1}{2}\left[{ }^{n} \frac{\text { th }}{2}\right.$ item $+\frac{\mathrm{n}+2 \text { th }}{2}$ item $]$
$\mathrm{M}_{\mathrm{D}}=\mathrm{L}_{1}+\frac{\frac{\left(\frac{N}{2}-\sum f m d-1\right) C}{\mathrm{fmd}}}{}$
4. QUARTILES
$\mathrm{Q}_{1}=\mathrm{L}_{\mathrm{Q} 1}+\frac{\left.\frac{(-N}{4}-\sum f Q-1\right) c}{\mathrm{fQ}}$
$\mathrm{Q}_{3}=\mathrm{L}_{\mathrm{Q} 3}+\frac{\frac{\left(\frac{3 N}{4}-\sum f Q-1\right) c}{\mathrm{fQ}}}{\mathrm{QQ}}$

MEASURES OF DISPERSION/VARIABILITY

1. RANGE

Range $=$ Largest value (L) - Smallest value (S)
Coefficient of Range $=\overline{L+S} \times 100$
2. THE QUARTILE DEVIATION (Q) Interquartile range $=Q_{3}-Q_{1}$

Quartile Deviation $={ }^{\frac{1}{2}}\left(Q_{3}-Q_{1}\right)$
Coefficient of Quartile Deviation $=\frac{Q^{23-Q 1}}{Q^{3+Q 1}} \times 100$
3. THE MEAN DEVIATION (MD)

MD $=\frac{1}{N} \sum\left|\mathrm{x}_{\mathrm{i}}-\ddot{\mathrm{X}}\right|$
$\mathrm{MD}={ }^{\frac{1}{N}} \sum\left|\mathrm{x}_{\mathrm{i}}-\ddot{\mathrm{X}}\right| \mathrm{f}_{\mathrm{i}}$
Coefficient of Mean Deviation $=\frac{\frac{\text { Mean Deviation }}{M e a n}}{} \times 100$
4. VARIANCE $\left(S^{2}\right)$
$S^{2}={ }^{\frac{1}{N}} \sum\left(\mathrm{x}_{\mathrm{i}}-\ddot{\mathrm{X}}\right)^{2}$
$S^{2}={ }^{\frac{1}{N}} \sum\left(\mathrm{x}_{\mathrm{i}}-\ddot{\mathrm{X}}\right)^{2 \mathrm{f}_{\mathrm{i}}}$
$\left.S^{2}={ }^{\left(\frac{1}{N}\right.} \sum \mathrm{x}_{\mathrm{i}}^{2} \mathrm{f}_{\mathrm{i}}\right)-\ddot{\mathrm{X}}^{2}$
$S^{2}=\left({ }^{\frac{1}{N}} \sum \mathrm{Xi}^{2}\right)-\ddot{\mathrm{X}}^{2}$
$S_{\mathrm{x}}{ }^{2}=\mathrm{h}^{2} \mathrm{~S}_{\mathrm{d}}{ }^{2}$
5. STANDARD DEVIATION (S)

$$
\mathrm{S}=\sqrt{ }^{\frac{1}{N}} \sum\left(\mathrm{x}_{\mathrm{i}}-\ddot{\mathrm{X}}\right)^{2}
$$

$S=\sqrt{ }^{\frac{1}{N}} \sum\left(\mathrm{x}_{\mathrm{i}}-\ddot{\mathrm{X}}\right)^{2} \mathrm{f}_{\mathrm{i}}$
$\left.S=\sqrt{\left(\frac{1}{N}\right.} \sum x_{i}^{2} f_{i}\right)-\ddot{X}^{2}$
$\left.S={ }^{\sqrt{\left(\frac{1}{N}\right.}} \sum \mathrm{x}_{\mathrm{i}}{ }^{2}\right)-\ddot{\mathrm{X}}^{2}$
$S_{x}=h S_{d}$
Coefficient of Variability (CV) $=\frac{\frac{\text { Standard deviation }}{\text { Arithmetic mean }}}{x 100}$
6. COMBINED MEAN ($\left.\ddot{\mathrm{X}}_{\mathrm{c}}\right)$ AND COMBINED STANDARD DEVIATION $\left(\mathrm{S}_{\mathrm{c}}\right)$ $\ddot{X}_{\mathrm{C}}=\frac{1}{N} \sum \mathrm{~N}_{\mathrm{i}} \ddot{\mathrm{X}}$
$\mathrm{S}_{\mathrm{C}}={ }^{\sqrt{\frac{1}{N}}} \sum \mathrm{~N}_{\mathrm{i}}\left(\mathrm{S}_{\mathrm{i}}{ }^{2}+\mathrm{di}^{2}\right)$
7. CORRELATION AND REGRESSION

Covariance $\left(\operatorname{cov}_{(x y)}\right.$ or $\left.S_{x y}\right)={ }^{\frac{1}{N}} \sum\left(\mathrm{x}_{\mathrm{i}}-\ddot{\mathrm{X}}\right)\left(\mathrm{y}_{\mathrm{i}}-\dot{\mathrm{Y}}\right)$
$\operatorname{cov}_{(x y)}$ or $S_{x y}=\left({ }^{\frac{1}{N}} \sum x_{i} y_{i}\right)-\ddot{X} \dot{Y}$
Coefficient of Correlation $\left(r_{x y}\right)=\frac{S x y}{s x S y}$
$r=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{\sqrt{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}} \sqrt{n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}}}$
Rank correlation coefficient or spearman's rank correlation coefficient (r_{s})
$\rho=1-\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)}$
Kendall Rank correlation
$\tau=\frac{n_{c}-n_{d}}{\frac{1}{2} n(n-1)}$
Pearson r correlation
$\gamma=\frac{N \sum x y-\sum(\mathrm{x})(\mathrm{y})}{\sqrt{\left.N \sum x^{2}-\sum\left(x^{2}\right)\right]\left[N \sum y^{2}-\sum\left(y^{2}\right)\right]}}$
Method of least squares
$\sum y=n a+b \sum x_{i}$
$\sum y_{i} x_{i}=a \sum x_{i}+b \sum x_{i}{ }^{2}$
$\sum x_{i}=n a+b \sum y_{i}$
$\sum x_{i} y_{i}=a \sum y_{i}+b \sum y_{i}{ }^{2}$
$b=\frac{n\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{n\left(\sum X^{2}\right)-\left(\sum X\right)^{2}}$
$a=\frac{\left(\sum Y\right)-b\left(\sum X\right)}{n}$
$\operatorname{LSMA}=a+b X$
$\mathrm{b}=\mathrm{r}_{\mathrm{xy}}-\frac{s y}{s x}$
$a=\dot{Y}-b \ddot{X}$

END

