THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6

--- -- -----

JANUARY – APRIL 2020 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER AND LIBRARY SCIENCE

REGULAR PROGRAMME

CMT 200: SEMICONDUCTOR THEORY

Date: APRIL 2020Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

- Q1. a) i) Explain the term integrated circuit. (2 marks)
 - ii) Differentiate between active and passive components giving an example in each case. (4 marks)
 - iii) Why is the temperature coefficient of resistance of a semiconductor negative? (2 marks)
 - b) Using the concept of energy-band diagram, explain why some materials behave as conductors, some as insulators and some as semiconductors. (6 marks)
 - c) The intrinsic concentration of free electrons for silicon at room temperature is 1.5×10^{16} per m³. The mobilities of free electrons and holes are $0.13 \text{m}^2/\text{Vs}$ and $0.05 \text{m}^2/\text{Vs}$, respectively. The atomic density in silicon is 5×10^{28} per m³. If it is doped with antimony with the concentration of 1 antimony atom per 2×10^8 silicon atoms, determine the conductivity of this intrinsic semiconductor. **(6 marks)**

Cuea/ACD/EXM/JANUARY – APRIL 2020 / COMPUTER / LIBRARY SCIENCE

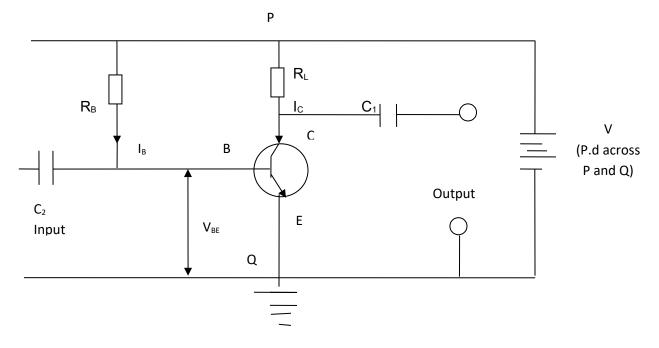
Page 1

- d) Explain why a pentavalent impurity is known as donor type and trivalent as acceptor type. (4 marks)
- e) The atomic number of Silver is 47. Determine its orbital distribution of electrons. (2 marks)
- f) Determine the resistivity of a sample of N-type germanium at 300K with donor density of $N_D = 10^{20}/m^3$; all donors are assumed ionized. Given that $\mu_n = 0.38m^2/Vs$. (4 marks)
- Q2. a) State four types of diodes, draw their circuit symbols and their applications. **(8 marks)**
 - b) Describe Full wave rectification. (8 marks)
 - b) Explain the difference between static and dynamic resistances of a diode. (4
 marks)

Q3. a) Draw a block diagram of a dc power supply and state the function of each block. (8)

marks)

b) Name any three types of thyristors, draw their circuit symbols and explain their applications.


(9 marks)

c) State the diode equation indicating the symbols used. (3 marks)

Cuea/ACD/EXM/JANUARY – APRIL 2020 / COMPUTER / LIBRARY SCIENCE

Page 2

Q4. a) Use appropriate diagrams to differentiate enhancement mode MOSFETS and depletion mode MOSFETS. (12 marks)

b) The figure below shows a voltage – amplifier.

Given that $I_c = 1.5 \text{ x } 10^{-3}\text{A}$, $V_{CE} = 6\text{V}$, V = 10V, $V_{BE} = 0.6$, $I_B = 1.5 \text{ x } 10^{-5}\text{A}$, then,

- i) State the functions of the capacitors C₁ and C₂ in the circuit. (4 marks)
- ii) Calculate the values of R_L and R_B . (4 marks)
- Q5. a) Differentiate bipolar transistors and field effect transistors. (8 marks)
 - b) State the three amplifier configurations and briefly describe their applications. (12 marks)

Cuea/ACD/EXM/JANUARY – APRIL 2020 / COMPUTER / LIBRARY SCIENCE

Page 3

Cuea/ACD/EXM/JANUARY – APRIL 2020 / COMPUTER / LIBRARY SCIENCE

Page 4