A. M. E. C. E. A
MAIN EXAMINATION
MAY - JULY 2019 TRIMESTER
FACULTY OF SCIENCE
DEPARTMENT OF CHEMISTRY
REGULAR PROGRAMME
CHEM 103: ACIDS AND BASES

Date: JULY 2019 Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other Two Questions

Q1. a) Using relevant structures, describe the neutralization of ethanedioic acid using sodium hydroxide
(4 marks)
b) Sketch a titration curve for the above reaction
c) A solution contains 0.20 moles of acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, and 0.10 moles of sodium acetate, $\mathrm{CH}_{3} \mathrm{COONa}$, made up to 1.0 L volume. Calculate the pH of the solution. $\left[\mathrm{K}\right.$ a for $\left.\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}\right]$
d) What is the pH of the previous solution if it was diluted to a volume of10.0 L?
(4 marks)
e) What does this result tell us about buffer solutions?
(3 marks)
A 0.025 M solution of formic acid, HCOOH , has a pH of 2.75 .
e) Calculate the \% ionization of this solution.
(4 marks)
f) Calculate the K_{a} for formic acid

Q2. If 12.5 g of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is added to 500 mL of 1.00 M aqueous ammonia, what is the equilibrium concentration of $\mathrm{Cu}^{2+}{ }_{(\text {(aq) }}$? (8 marks)
a) Using relevant examples, explain the differences between a Bronsted- Lowry and Arrhenius acids
(6 marks)
b) The solubility of CaF (molar mass 78.1) at $18^{\circ} \mathrm{C}$ is reported to be 1.6 mg per 100 mL of water. Calculate the value of K under these conditions.
(6 marks)

Q3. Arrange the compounds of each series in order of increasing acidic strength; Sulfuric acid $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$, fluorosulfonic acid $\left(\mathrm{FSO}_{3} \mathrm{H}\right)$, and sulfurous acid $\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]$. Explain why?
a) Explain why blood can be considered a buffer
(7 marks)
b) Nitrous acid, HNO_{2} has a K_{a} value of 6.0×10^{-4}. Calculate the initial concentration of HNO_{2} if a solution of this acidhas a pH of 3.65 .
(5 marks)

Q4. Calculate the pH of a solution of the following basic salt solution if [ClO^{-}] is 0.100 M and the K_{a} is 2.9 * 10^{8} :
i) Phosphoric acid is a polyprotic acid.
a) Using relevant equations, explain how it dissociates in aqueous solution
(6 marks)
b) Sketch a titration curve for the neutralization of phosphoric acid using sodium hydroxide
(6 marks)

Q5. a) The ionization of a weak acid (HA) happens in the following way:

$$
H A \leftrightarrow H_{(a q)}^{+i+A_{a q}}
$$

Using this equation, derive the Henderson- Hasselbach equation
(10marks)
b) Using the relationship between a weak acid and it's conjugate base, explain why $K_{a} K_{b}=K_{w}$

