

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25 Fax: 254-20-891084 email:det@cuea.edu <u>exams@cuea..edu</u> <u>directorofexams@cuea.edu</u>

FACULTY OF ARTS & SOCIAL SCIENCES DEPARTMENT OF ECONOMICS

SEPTEMBER/DECEMBER 2020 SEMESTER REGULAR PROGRAMME UNIT CODE: ECN 409 TITLE: BASIC ECONOMETRICS II

Date: DECEMBER 2020	Duration: HOURS		
INSTRUCTIONS: Answer Question ONE and any other TWO Questions			

Q1.

- a. Explain the rationale of inclusion of a disturbance term in a regression model. (4 Marks)
- b. Given the general regression model $Y = X\beta + \varepsilon$ where Y and ε are nx1 vectors β is a (k+1)x1 vector and X is a nx(k+1) matrix:

	1	ר14			г1	24	ך 6	
Where, $Y =$	64	and X =		1	33	18 13 25		
	55		1	65	13			
	98			1	72	25		
		L95]			L_1	10	18	

Obtain the fitted regression model $\hat{\beta} = (X^I X)^{-I} X^I Y$

c. Identify each of the equation in the following system of equations using the Order condition.

$$Y_1 = 3X_1 + 4X_2 - 2Y_2$$

$$Y_2 = Y_1 + 3X_2$$

$$Y_3 = Y_2 + 2X_2 - 3X_3 + X_1$$

(6 Marks)

(8 Marks)

d. Given the following model:

 $Y = a + \beta X + \varepsilon$

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 1

ISO 9001:2015 Certified by the Kenya Bureau of Standards

Where, Y=1, 0 and X is a quantitative variable. Discuss and proof the limitations of estimating this model using OLS

(4 Marks)

- (4 Marks)
- e. Discuss 5 properties of time series data.
- f. Define the two basic approaches of modelling unobserved effects in panel data. What are the different assumptions that are made in the 2 settings? (4 Marks)

Q2.

- a. Given the model $Y = X\beta + \varepsilon$ where Y and ε are nx1 vectors β is a (k+1)x1 vector and X is a nx(k+1) matrix:
 - i. Derive the least squares estimators $\hat{\beta} = (X^I X)^{-I} X^I Y$ (6 Marks)
 - ii. Determine the mean of $\hat{\beta}$ that is $E(\hat{\beta})$ (4 Marks)
 - iii. Compute the variance of $\hat{\beta}$ that is Var($\hat{\beta}$) (6 Marks)
 - iv. Explain what you understand by the concept of a good estimator and state the desirable properties of a good estimator $\hat{\beta}$ (4 Marks)

Q3.

a. MA(1) Process can be expressed as follows:

$$y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$$

Calculate:

i. the mean of y_t that is $E(y_t)$ (3 Marks) ii. the Variance of y_t that is $Var(y_t)$ (4 Marks) iii. Autocorrelation function (ACF) (3

Marks)

- b. Explain the importance of hypothesis testing in an econometric analysis and highlight the circumstances under which a researcher would use a t test other than Z test. (5 Marks)
- c. Use the matrix method to demonstrate the OLS assumption of error term being Homoscedastic. (5 Marks)

Q4.

a. Explain the main steps involved in empirical Econometric study. (6 Marks)

b. Consider the simple Keynesian model of income Determination.

 $C_t = \beta_0 + \beta_1 Y_t + \mu_t \qquad 0 < \beta_1 < 1$

 $Y_t = C_t + I_t$ i.Define and prove the simultaneous equation bias.(6 Marks)ii.Discuss the requirements of a logistic regression.(5 Marks)iii.Explain the meaning of spurious regression.(3 Marks)

- Q5.
 - Discuss the steps used in estimating panel data models using fixed effects model. (3 Marks)
 - b. Highlight the properties of the error term in a random effects model. (3 Marks)

ISO 9001:2015 Certified by the Kenya Bureau of Standards

c. The annual sales revenue (in sh'000) for a product is a function of the gender of sales person and annual advertising expenditure (in sh'00) are summarized in the table below:

Annual Sales	Gender of Salesperson	Advertisement		
Revenue		Expenditure		
20	Female	28		
23	Male	23		
25	Male	38		
27	Female	16		
21	Male	20		
29	Female	28		
22	Female	23		
24	Female	30		
27	Male	26		
35	Male	32		
24	Male	18		
32	Female	26		
19	Male	12		
42	Male	38		
25	Female	21		
31	Male	10		

Where, Female =1, 0 otherwise.

- i. Find the regression equation of annual sales on gender and advertising expenditure. (8 Marks)
- ii. Determine the standard error of the regression coefficients. (6 Marks)

END