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Question 1(Compulsory) 

a). i) Describe the components which make up a time series.                               (8 marks) 

ii) Explain   the objectives of a time series analysis.                                         (2 marks) 

b). Given that 𝑋𝑡 = 𝑒𝑖𝑡𝜃,show that the effect of the first difference filter, the series is   magnified       

        by  𝑔(𝜃) = 2𝑠𝑖𝑛
𝜃

2
                                 (5marks) 

c). Let 𝑋𝑡: 𝑡 = 0,∓1,∓2,… ..    be a stochastic process given by 𝑋𝑡 = 𝑎 + 𝑏𝑡 + 𝑒𝑡  where 𝑒𝑡  is a 

sequence of independent random variables distributed with 𝜇 = 0,∧ 𝜎2 as 𝑒𝑡𝑁(0, 𝛿
2).Show that 

𝑋𝑡 = (𝑋𝑡 − 𝑋𝑡−1) is stationary            (5marks) 

d). Explain the following statements                                                                           

i) Time series is stationary in the weak sense.                                              (3 marks) 

ii) Time series is stationary in the strict sense                                                  (3marks)  
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e). Explain the situations in which one would employ the two main models 

of time series analysis        ( 4marks)   

Question 2  

a). Given that𝑌𝑡 = 𝑆𝑖𝑛𝜃𝑡, Show that it is a weak series and determine the covariance function of 

the series                                                                                            (10 marks) 

 

b) Consider an AR(1) given by 𝛼𝑋𝑡 + 𝑒𝑡 , where 𝑒𝑡 is a purely random process and |𝛼| < 1   and 

let 𝑓 (𝜆) be the normalized spectrum of 𝑋𝑡 

Show that 𝑓 (𝜆 =
1−𝛼2

2𝜋(1−2𝛼𝑐𝑜𝑠𝜆+𝛼2)
                        (10marks) 

Question 3 

a). i) Define a moving average process of order q, [ MA(q)] hence:           (2marks) 

ii) Determine its mean and variance.                   (4marks) 

iii) Obtain its covariance and autocorrelation functions.          (4marks) 

iv)  State giving reason, whether it is a second order stationary.            (2marks) 

b) .Consider the autoregressive process of order 2 given by 𝑋𝑡 =∝1 𝑥𝑡−1 +∝2 𝑥𝑡−2 + 𝑒𝑡 where  

(𝑒𝑡) is a purely random process. Derive the Yule-Walker equation and hence its general solution. 

What are the values of ∝1  and  ∝2  for which the process is stationary.      (8marks) 

Question 4 

a).Given that 𝑋𝑡 = ∑ 𝛼𝑘𝑒𝑡−𝑘
∞
𝑘=0  where 𝑒𝑡 is a purely random process, obtain the autocorrelation 

function.              (10 marks) 

b).Let𝑋𝑡=𝑥𝑡−1+𝑒𝑡where the sequence 𝑒𝑡 is a sequence of uncorrelated random variable with mean 

µ and variance δ2 and  𝑥0 = 0 , Show that the time series in non Stationary        (10marks) 
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Question 5 

a) Consider two MA (1)processes P and Q given by 

𝑃: 𝑋𝑡 = 𝑒𝑡 + 𝜆𝑒𝑡−1 

𝑄: 𝑋𝑡 = 𝑒𝑡 +
1

𝜆
𝑒𝑡−1 

Obtain the autocorrelation function for the two processes. Is a moving average process uniquely 

identified from a given autocorrelation function give reason.                       (8 marks) 

b) Consider a finite MA process defined as 

𝑋𝑡 = ∑ 𝛽𝑖,𝑒𝑡−𝑗
𝑚
𝑗=0 , where 𝑒𝑡  is a purely random process and let 𝑓𝑥(𝜆)  be the spectral density 

function of 𝑋𝑡 

Show that 𝑓𝑥(𝜆 =
𝛿2

2𝜋(1+2𝛽1𝑐𝑜𝑠𝜆+𝛽1
2)

                                   (12marks) 

 
 
 
 
 
 
 
 
 
 
 
 
 

*END* 


