

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAIN EXAMINATION

SEPTEMBER – DECEMBER 2020 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

MAT 465: TIME SERIES ANALYSIS

Date: APRIL 2020Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

Question 1(Compulsory)

a). i) Describe the components which make up a time series. (8 marks) ii) Explain the objectives of a time series analysis. (2 marks) b). Given that $X_t = e^{it\theta}$, show that the effect of the first difference filter, the series is magnified by $g(\theta) = 2\sin\frac{\theta}{2}$ (5marks) c). Let $X_t: t = 0, \pm 1, \pm 2, \dots$ be a stochastic process given by $X_t = a + bt + e_t$ where e_t is a sequence of independent random variables distributed with $\mu = 0, \wedge \sigma^2$ as $e_t N(0, \delta^2)$. Show that $X_t = (X_t - X_{t-1})$ is stationary (5marks) d). Explain the following statements i) Time series is stationary in the weak sense. (3 marks) ii) Time series is stationary in the strict sense (3marks)

Cuea/ACD/EXM/DECEMBER 2020/FACULTY OF SCIENCE

ISO 9001:2015 Certified by the Kenya Bureau of Standards

e). Explain the situations in which one would employ the two main models

of time series analysis (4marks)

Question 2

a). Given that $Y_t = Sin\theta t$, Show that it is a weak series and determine the covariance function of the series (10 marks)

b) Consider an AR(1) given by $\alpha X_t + e_t$, where e_t is a purely random process and $|\alpha| < 1$ and let $f(\lambda)$ be the normalized spectrum of X_t

Show that
$$f \quad (\lambda = \frac{1 - \alpha^2}{2\pi (1 - 2\alpha \cos \lambda + \alpha^2)}$$
 (10marks)

Question 3

a). i) Define a moving average process of order q, [MA(q)] hence:	(2marks)
ii) Determine its mean and variance.	(4marks)
iii) Obtain its covariance and autocorrelation functions.	(4marks)
iv) State giving reason, whether it is a second order stationary.	(2marks)

b) .Consider the autoregressive process of order 2 given by $X_t = \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + e_t$ where

 (e_t) is a purely random process. Derive the Yule-Walker equation and hence its general solution.What are the values of \propto_1 and \propto_2 for which the process is stationary.(8marks)

Question 4

a).Given that $X_t = \sum_{k=0}^{\infty} \alpha^k e_{t-k}$ where e_t is a purely random process, obtain the autocorrelation function. (10 marks) b).Let $X_t = x_{t-1} + e_t$ where the sequence e_t is a sequence of uncorrelated random variable with mean μ and variance δ^2 and $x_0 = 0$, Show that the time series in non Stationary (10marks)

Cuea/ACD/EXM/DECEMBER 2020/FACULTY OF SCIENCE

Question 5

a) Consider two MA (1)processes P and Q given by

$$P: X_t = e_t + \lambda e_{t-1}$$
$$Q: X_t = e_t + \frac{1}{\lambda} e_{t-1}$$

Obtain the autocorrelation function for the two processes. Is a moving average process uniquely identified from a given autocorrelation function give reason. (8 marks)

b) Consider a finite MA process defined as

 $X_t = \sum_{j=0}^m \beta_{i,e_{t-j}}$, where e_t is a purely random process and let $f_x(\lambda)$ be the spectral density function of X_t

Show that
$$f_x(\lambda = \frac{\delta^2}{2\pi (1+2\beta_1 \cos\lambda + \beta_1^2)}$$
 (12marks)

END