

E CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

SEPTEMBER – DECEMBER 2020 TRIMESTER

SCHOOL OF SCIENCE

DEPARTMENT OF MATHEMATICS & ACTUARIAL SCIENCE

REGULAR PROGRAMME

MAT 263: PROBABILITY & STATISTICS IV

Date: DECEMBER 2020Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

QUESTION ONE (30MARKS)

a)The random variables X_1, X_2 and X_3 have the joint tri - variate probability density function

$$f(x_1, x_2, x_3) = \begin{cases} 3\lambda(x_1 + x_2)x_3, & 0 < x_1 < 1, 0 < x_2 < 2, 0 < x_3 < 3\\ 0 & elsewhere \end{cases}$$

- i) Determine λ
- ii) Find the marginal p.d.f of X_3
- iii) Find $\Pr\left[X_1 \le \frac{1}{2}, X_2 > 1, 1 < X_3 < 2\right]$ (8 marks)

b) Let $X_1, X_2, ..., X_n$ be a random sample from a distribution that has a mean of μ and variance σ^2 . Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ denote the sample. Find the mean and variance \overline{X} .

(5 marks)

c) The random vector $\underline{X} = (X_1, X_2)$ has p.d.f

Cuea/ACD/EXM/DECEMBER 2020/SCHOOL OF SCIENCE

Page 1

ISO 9001:2015 Certified by the Kenya Bureau of Standards

$$f(x_1, x_2, x_3) = \begin{cases} \frac{1}{12}(1+x_2), & 0 < x_1 < 3, 0 < x_2 < 2\\ 0 & elsewhere \end{cases}$$

Find the moment generating function of \underline{X} (5 marks)

- d) i) Define the characteristic function of a random variable X (2marks)
 - ii) Find the characteristic function of X if the p.d.f of X is

$$f(x) = \begin{cases} e^{-(x-2)}, & x > 2\\ 0 & elsewhere \end{cases}$$
(4 marks)

e) Consider a random variable with moment generating function M(t). Show that the second derivative of $\ln[M(t)]$ evaluated at t = 0 is the variance of the random variable. (6marks)

QUESTION TWO (20MARKS)

a) Suppose that X_1, X_2 and X_3 are independent random variables with $E(X_i) = 0$ and $E(X_i^2) = 1$ for i = 1, 2, 3. Determine $E\left[(-4X_3 + X_2)X_1^2\right]$ (6 marks)

b) Suppose that the random vector has the 3-variate distribution given by

$$f(x_1, x_2, x_3) = \frac{20!}{x_1! x_2! x_3! (20 - x_1 - x_2 - x_3)!} \left(\frac{1}{10}\right)^{x_1} \left(\frac{1}{5}\right)^{x_2} \left(\frac{3}{10}\right)^{x_3} \left(\frac{2}{5}\right)^{20 - x_1 - x_2 - x_3}$$

- i. Obtain the moment generating function \underline{X} (3 marks)
- ii. Determine the marginal distribution of X_2 and X_3 (4 marks)
- iii. The conditional mean and variance of X_1 given that $X_2 = X_2$ and $X_3 = X_3$ (7 marks)

Cuea/ACD/EXM/DECEMBER 2020/SCHOOL OF SCIENCE

QUESTION THREE (20MARKS)

a) Suppose that $\underline{X} = (X_1, X_2, X_3)$ has the 3-variate normal distribution with density $f(\underline{x}) = c \exp\left(-\frac{1}{2}Q\right)$ where $Q = \frac{1}{17} \left(11x_1^2 + 7x_2^2 + 5x_3^2 - 6x_1x_2 - 4x_1x_3 - 2x_2x_3 + 2x_1 - 16x_2 - 22x_3 + 24\right).$

Identify $\underline{\mu}$ and $\underline{\Sigma}$. Hence find c .

(8marks)

b) Suppose the random variable X has Poisson distribution

$$f(x) = \frac{e^{-\lambda}\lambda^x}{x!}; x = 0, 1, 2, \dots$$

Determine the characteristic function of X (6 marks)

c) Suppose that X_1, X_2, X_3 are three independent random variables each having p.d.f

$$f(x) = \begin{cases} 2x, 0 < x < 1\\ 0, elsewhere \end{cases}$$

Let $Y = Max.(X_1, X_2, X_3)$. Determine the p.d.f of Y and hence compute $Pr.(Y \le \frac{1}{2})$. (6 marks)

QUESTION FOUR (20MARKS)

a)The random variables X_1, X_2 and X_3 have the *tri* – var*iate* probability density

$$f(x_1, x_2, x_3) = \begin{cases} (x_1 + x_2)e^{-x_3} & 0 < x_1 < 1, 0 < x_2 < 1, x_3 > 0 \\ 0 & elsewhere \end{cases}$$

i) Find the marginal distribution of (X_1, X_3)

ii) Find the conditional probability density of (X_1, X_3) given $X_2 = \frac{1}{3}$ (7 marks)

b)Suppose that $X_1, X_2, ..., X_p$ are independent random variables. Show that

$$\Pr(a_1 < X_1 < b_1, a_2 < X_2 < b_2, ..., a_p < X_p < b_p) = \prod_{i=1}^p \Pr(a_i < X_i < b_i)$$
(5 marks)

c) Suppose that the random variables X_1, X_2 and X_3 are jointly distributed with means

 $E(X_1) = E(X_2) = E(X_3) = 0$ and variances $\sigma_1^2 = 3$, $\sigma_2^2 = 1$ and $\sigma_3^2 = 4$. Suppose the covariances are $\sigma_{12} = \sigma_{13} = \sigma_{23} = 1$. If X_1 linearly regresses on X_2 and X_3 , determine the linear regression coefficients. Hence find $E(X_1/X_2 = 2, X_3 = 7)$ (8 marks)

QUESTION FIVE (20MARKS)

a) Let $y = (y_1, y_2y_3)'$ be a random vector with mean vector and covariance matrix

	(1)			(1	1	0)
$\mu =$	-1	,	$\Sigma =$	1	2	3
	(3)			$\left(0\right)$	3	10)

i. Let
$$z = 2y_1 - 3y_2 + y_3$$
. Find $E(z)$ and $Var(z)$
ii. $z_1 = y_1 + y_2 + y_3$ and $z_2 = 3y_1 + y_2 - 2y_3$. Find $E(z)$ and $cov(z)$ where
 $z = (z_1, z_2)'$. (10 marks)

b) The covariance matrix of $\underline{X} = (X_1, X_2, X_3)^{T}$ is

	4	-2	1]	
$\sum =$	-2	7	0	
	1	0	5	

i) Find the total variation(2 marks)ii) Find the generalized variation(2 marks)iii) Determine the partial correlation coefficient between X_1 and X_2 given X_3 (6 marks)

END

Cuea/ACD/EXM/DECEMBER 2020/SCHOOL OF SCIENCE