

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAIN EXAMINATION

SEPTEMBER – DECEMBER 2020 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

MAT 503: NUMERICAL ANALYSIS I

Date: APRIL 2020Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

- **Q1** a) The number x approximates x with a relative error of at most 10^{-N} . What range of values can x given x = 150 and N = 3. (6 marks)
- b) Use a polynomial of degree three to approximate x = 0.35 from the followings below: (7 marks)

x	0	0.1	0.3	0.4	0.5	0.6
f(x)	1.0	0.9	0.71	0.61	0.52	0.44

c) Define the following:

- i) Absolute error
- ii) Relative error

d) Use Newton divided difference scheme to approximate $P_{012}(2)$ from table below:

x_i	0	1	3
fi	1	3	2

(6 marks)

(2 marks)

(2 marks)

Cuea/ACD/EXM/DECEMBER 2020/FACULTY OF SCIENCE

ISO 9001:2020 Certified by the Kenya Bureau of Standards

Page 1

Q2 a) Prove the following: For arbitrary numbers $x_0 < x_1 < \cdots < x_m$ and there exists precisely one polynomial $P \in \prod, n = 1 = \sum_{i=0}^{m} n_i$, which satisfies $P^k(x_i) = f_i^k$, $i = 0, 1, \cdots, m, k = 0, 1, \cdots, n_i - 1$ (10 marks)

b) Given $m = 1, n_0 = 2, n_1 = 3$ determine the Hermite interpolating polynomial. (13 marks)

Q3 a) Use Neville Algorithm to determine $P_{0123}(x)$ given the following table:

(13 marks)

x _i	0	1	3	5
f _i	1	3	2	4

b) Find the Taylor polynomial of degree 4 for lnx about $x^*=1$. Use the result to approximate the function at x=1.3 and estimate the error incurred and the actual value. (10 marks)

Q4 a) Calculate the integral

$$\int_0^1 t^5 dt$$

by extrapolation over the steps $h_0 = 1$, $h_1 = 1/2$, $h_2 = 1/4$. (23 marks) **Q5** a) Sketch the quadrilateral bounded by the lines x = 0, y = 0, y = 2(x - 1), $y = \frac{1}{2}x + 1$, and find the vertices of the quadrilateral. Find appropriate bilinear basis functions for interpolation on this quadrilateral, i.e., four bilinear functions $\mathcal{E}_k(x)$, k=0,1,2,3 which takes value 1 at vertex K and are zero at the other three vertices. Hence interpolate the function $e^{(-x-y)}$ over this quadrilateral. First compute the function values at the vertices, secondly, construct the interpolation $\hat{f}(x, y)$ and finally find the value of this interplant at the point

(1,1). Compare the result with the exact value of the original function f(x,y) at this point.

END