THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A
MAIN EXAMINATION
P.O. Box 62157
00200 Nairobi - KENYA Telephone: 891601-6
Fax: 254-20-891084
E-mail:academics@cuea.edu

SEPTEMBER - DECEMBER 2020 TRIMESTER
FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE
REGULAR PROGRAMME
MAT 503: NUMERICAL ANALYSIS I
Date: APRIL 2020 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any other TWO Questions
Q1 a) The number xapproximates x with a relative error of at most 10^{-N}. What range of values can x given $x=150$ and $N=3$.
(6 marks)
b) Use a polynomial of degree three to approximate $x=0.35$ from the followings below:
(7 marks)

x	0	0.1	0.3	0.4	0.5	0.6
$\mathrm{f}(\mathrm{x})$	1.0	0.9	0.71	0.61	0.52	0.44

c) Define the following:
i) Absolute error
(2 marks)
ii) Relative error (2 marks)
d) Use Newton divided difference scheme to approximate P_{012} (2)from table below:

x_{i}	0	1	3
f_{i}	1	3	2

(6 marks)

Q2 a) Prove the following: For arbitrary numbers $x_{0}<x_{1}<\cdots<x_{m}$ and there exists precisely one polynomial $P \in \Pi, n=1=\sum_{i=0}^{m} n_{i}$, which satisfies $P^{k}\left(x_{i}\right)=f_{i}^{k}, i=$ $0,1, \cdots, m, k=0,1, \cdots, n_{i}-1$
b) Given $m=1, n_{0}=2, n_{1}=3$ determine the Hermite interpolating polynomial. (13 marks)

Q3 a) Use Neville Algorithm to determine $P_{0123}(x)$ given the following table:
(13 marks)

x_{i}	0	1	3	5
f_{i}	1	3	2	4

b) Find the Taylor polynomial of degree 4 for $\ln x$ about $x^{*}=1$. Use the result to approximate the function at $\mathrm{x}=1.3$ and estimate the error incurred and the actual value.

Q4 a) Calculate the integral

$$
\int_{0}^{1} t^{5} d t
$$

by extrapolation over the steps $h_{0}=1, h_{1}=1 / 2, h_{2}=1 / 4$.
Q5 a) Sketch the quadrilateral bounded by the lines $x=0, y=0, y=2(x-1), y=\frac{1}{2} x+1$, and find the vertices of the quadrilateral. Find appropriate bilinear basis functions for interpolation on this quadrilateral, i.e., four bilinear functions $\varepsilon_{k}(x), k=0,1,2,3$ which takes value 1 at vertex K and are zero at the other three vertices. Hence interpolate the function $e^{(-x-y)}$ over this quadrilateral.
First compute the function values at the vertices, secondly, construct the interpolation $f(x, y)$ and finally find the value of this interplant at the point
$(1,1)$. Compare the result with the exact value of the original function $f(x, y)$ at this point.
END

