

E CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084

E-mail:academics@cuea.edu

MAIN EXAMINATION

SEPTEMBER - DECEMBER 2020 SEMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

MAT 543: PROBABILITY THEORY

Date: DEC 2020 Duration: 3 Hours

INSTRUCTIONS: Answer any THREE Questions

QUESTION ONE

a) Let (WF,P) a measure space? Define each term and use illustrations where possible (6 marks)

b) Let W= ; F = B(;) and

$$A_n = \begin{cases} \left[0, \frac{1}{n}\right], & \text{if } n \text{ is odd} \\ \left[1 - \frac{1}{n}, 1\right], & \text{if } n \text{ is even} \end{cases}$$

Show that $\limsup A_n = \{0,1\}$ and $\liminf A_n = \emptyset$

(5 marks)

c) Let be a non-empty set and $F=P(W\!\!)$ the power set of Ω . Define a measure μ on $(\Omega,P(\Omega))$ by

$$\mu(\emptyset) = 0$$

 $\mu(E) = +\infty \text{ if } E \neq \emptyset$

- i) Show that μ is a measure (3 marks)
- ii) Show that μ is neither finite nor σ -finite (3 marks)
- d) Define an expectation of a random variable, hence or otherwise show that the expectation operator is linear (4 marks)
- e) State the Central Limit Theorem

(2 marks)

QUESTION TWO

- a) State and prove the Dominated Convergence theorem (7 marks)
- b) If f and g are measurable functions, show that $\left(\frac{f}{g}\right)^2$ is also measurable (5 marks)
- c) Define the following terms:
 - i) Convergence almost everywhere
 - ii) Convergence in probability
 - iii) Convergence in distribution (6 marks)
- d) Let (W,F) be a measurable space and $A \subset \Omega$ such that $A \notin F$. Show that the indicator function $1_A(\omega)$ is not a measurable function (5 marks)

QUESTION THREE

- a) Let $\{F_n\}_{n=1}^{\infty}$ be a sequence of σ -algebras on a non-empty set Ω . Show that their countable intersection is also a σ -algebra (6 marks)
- b) Define a measurable function. Further, show that given two measurable functions f and g, their difference f-g is also measurable (6 marks)
- c) Let $\{B_n\}_{n\geq 1}$ be a sequence of events. Prove that if $B_n \uparrow B$, then $P(B_n) \uparrow P(B)$ as $n \to \infty$ (7 marks)
- d) Using simple random variables, show that the expectation operator is monotone i.e. if $X \le Y$, then $E(X) \pounds E(Y)$ (4 marks)

QUESTION FOUR

- a) Prove that if $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$ does not always imply that $X_n + Y_n \xrightarrow{d} X + Y$ (7 marks)
- b) State and prove the weak law of large numbers (6 marks)
- c) State and prove the first Borel Cantelli's lemma (7 marks)
- d) Let Ω be a non-empty. Using a counter example, show that a union of σ algebras on the set Ω is not necessarily a σ -algebra (3 marks)

QUESTION FIVE

a) Let $X \sim B(n, p)$ a Binomial random variable with the given fixed parameters. Given a fixed a > 0, show that

$$P_{\xi}^{x} \frac{X}{n} - p^{\beta} a_{\overline{\phi}}^{\underline{o}} \frac{p(1-p)}{a^{2}n}$$
 (6 marks)

- b) Prove that the Dirichlet function on the interval [0,1] is Lebesgue integrable but not Riemann integrable (4 marks)
- c) Prove that if $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$, X_n and Y_n are independent, then $X_n Y_n \xrightarrow{d} XY$ (6 marks)

- d) Let (W,F) be a measurable space. Show that given two measurable f and g functions on (W,F), their product $f \times g$ is also measurable (5 marks)
- e) Show that if P is a probability measure on the measurable space (W,F), then P is additive (3 marks)

END