

É CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAIN EXAMINATION

SEPTEMBER – DECEMBER 2020 SEMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

ACS 402: RISK MATHEMATICS

Date: DEC 2020Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

QUESTION ONE

- a) For a Poisson process with intensity λ , determine the probability that exactly one event will occur during a finite time interval of length *t* (3 marks)
- b) Let *S* be a compound Poisson random variable with parameter $\lambda = 5$, $p(1) = \frac{1}{\epsilon}$

and $p(2) = \frac{5}{6}$. Use Panjer's recursion method to calculate the distribution of *S* (5 marks)

c) Let *S* be a compound Poisson random variable with parameter $\lambda = 7$ and uniform (0,1) distributed claims. Approximate P(S < 10) using the central limit theorem approximation (4 marks)

- d) An insurance company will be required to make a payout of \$600 on a particular risk event, which is likely to occur with a probability of 0.6. The utility for any level of wealth, *w* is given by: U(w) = 3000 + 0.7w. The insurer's initial level of wealth is \$5000. Calculate the minimum premium the insurer will require in order to take on the risk (4 marks)
- e) Suppose that an insured party has an exponential utility function with parameter α .
 - i) What is the maximum premium P^+ he is willing to pay for a risk X ? (3 marks)

CUEA/ACD/EXM/DEC 2020/FACULTY OF SCIENCE

- ii) Suppose that the loss X is exponentially distributed with parameter $\theta = 0.02$ and that $\alpha = 0.0025$, what is the value of P^+ (3 marks)
- iii) Using the approximation formula, compute the approximated value of P^+ (3 marks)
- f) Define the following
 - i) Compound Poisson process
 - ii) Mixture distribution
 - iii) The Arrow-Pratt's measure of relative risk aversion
 - iv) The probability of ruin
 - v) Proportional reinsurance (5 marks)

QUESTION TWO

- a) State and explain two limitations of utility theory (4 marks)
- b) Assume that X and Y are independent standard normal random variables. Derive, showing each step the distribution of Z = X + Y? (4 marks)
- c) An insurer knows from past experience that the number of claims received per month has a Poisson distribution with mean 10, and that claim amounts have an exponential distribution with mean 400. The insurer uses a security loading of 30%.
 - i) Calculate the insurer's adjustment coefficient (4 marks)
 - ii) Compute an upper bound for the insurer's probability of ruin, if the insurer sets aside an initial surplus of 1,200 (3 marks)
- d) Consider a compound Poisson distribution with $\lambda = 5$ and $P(X = 1, 2, 3) = \frac{1}{4}, \frac{2}{3}, \frac{1}{12}$

Compute the distribution of S

(5 marks)

(2 mark)

QUESTION THREE

a) Let *N* be a random variable having the Binomial distribution with parameters n = 20 and p = 0.6. Let X_i be i.i.d random variables having the Exponential

distribution with $\theta = 1$ and that X_i are independent of N. Suppose that $S = \sum_{i=1}^{N} X_i$

Calculate the following:

- i) The expectation of *S* (2 marks)
- ii) The variance of S (2 marks)
- iii) The moment generating function of S (3 marks)
- b) Assume there is a chance of 0.3 that there is a claim. When a claim occurs the loss is exponentially distributed with parameter $\theta = 2$. Suppose there are 400 independent policies with this loss distribution, compute the mean and variance of their aggregate loss (5 marks)
- c) State and explain the net profit condition as applicable in ruin theory (3 marks)
- d) State the Lundberg's inequality

CUEA/ACD/EXM/DEC 2020/FACULTY OF SCIENCE

e) Assume that X is exponentially distributed with parameter $\beta = 0.5$. Compute the value of the adjustment coefficient? (3 marks)

QUESTION FOUR

- a) Stacy's utility function can be described $U(w) = \sqrt{w}$. She faces a potential loss of \$100,000 in the event that her should house burn down, which has a probability of 0.05.
 - i) Calculate the maximum premium that Stacy would be prepared to pay to insure herself against the total loss of her house if her initial level of wealth was \$150,000 and comment on your results (4 marks)
 - ii) Suppose that Prudent Life plc has an initial wealth of \$50 million and a utility function of the form U(w) = w, calculate the minimum premium Prudent Life plc would require in order to offer insurance to Stacy and comment on whether insurance is feasible in this instance. (3 marks)
- b) If reported claims follow a Poisson process with rate 6 per day (and the insurer has a 24 hour hotline), calculate:
 - i) The probability that there will be fewer than 3 claims reported on a given day (3 marks)
 - ii) the probability that another claim will be reported during the next two-hour period (3 marks)
- c) Derive the probability density of the sum of two independent random variables, each of which is gamma with parameter $\alpha = 1$ and $\beta = 1$? (4 marks)
- d) Differentiate between a compound distribution and a mixed distribution (3 marks)

QUESTION FIVE

a) Prove that if $S_1, S_2, ..., S_m$ are independent compound Poisson random variables with Poisson parameters λ_i and claim distribution P_i for i = 1, 2, ..., m, then

$$S = S_1 + S_2 + ... + S_m$$
 is compound Poisson distributed with specifications $\lambda = \sum_{i=1}^m \lambda_i$

and
$$P(x) = \sum_{i=1}^{m} \frac{\lambda_i}{\lambda} P_i(x)$$

(5marks)

b) Let *S* be a compound Poisson random variable with parameter $\lambda = 3$, $p(1) = \frac{7}{12}$

and $p(2) = \frac{5}{12}$. Use Panjer's recursion method to calculate the distribution of *S* (5 marks)

- c) State and explain three axioms of the expected utility theory (6 marks)
- **d)** Suppose that for w < 10, the insured's utility function is $U(w) = 10w w^2$. What is the maximum premium P^+ as a function of $w, w \in [0, 10]$ for an insurance policy against a loss 1 with probability 0.4? (4 marks) *END*

CUEA/ACD/EXM/DEC 2020/FACULTY OF SCIENCE