THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

END OF SEP-DEC 2020 TRIMESTER EXAM

MAT 230: VECTOR ANALYSIS

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO TIME:2 HRS

QUESTION 1 (COMPULSORY)

- a) State which of the following are scalars and which are vectors giving reasons.
 - i. Momentum
 - ii. Energy
 - iii. Speed
 - iv. Weight

b) Find the projection of the vector $\hat{A} = \hat{i} - 2\hat{j} + \hat{k}$ on the vector $\hat{B} = 4\hat{i} - 4\hat{j} + 7\hat{k}$ (5mks)

(4mks)

c) Find the angle between $\hat{A} = 2\hat{i} + 2\hat{j} - \hat{k}$ and $\hat{B} = 6\hat{i} - 3\hat{j} + 2\hat{k}$ (5mks)

d) If
$$\hat{A} = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$$
 and $\hat{B} = \sin t\hat{i} - \cos t\hat{j}$ find $\frac{d}{dt}(\hat{A} \times \hat{B})$ (6mks)

e) Given
$$\phi = 2x^3 y^2 z^4$$
 find $\nabla \cdot \nabla \phi$ (5mks)

f) If $\hat{A} = (3x+6y)\hat{i} - 14yt\hat{j} + 20xz^2\hat{k}$, evaluate $\int \hat{A}.d\tilde{r}$ from (0,0,0) to (1,1,1) along the path $x = t, y = t^2, z = t^3$ (5mks)

QUESTION TWO 20MKS

a) Prove
i.
$$\nabla \times (\nabla \phi) = 0; Curlgrad \phi = 0$$
 (7mks)

ii.
$$\nabla . (\nabla \times A) = 0; (div curl A = 0)$$
 (7mks)

b) Find the unit tangent vector to any point on the curve $x = t^2 + 1$, y = 4t - 3, $z = 2t^2 - 6t$, hence or otherwise determine the unit tangent at the point where t = 2 (6mks)

QUESTION THREE 20MKS

- a) Find the directional derivative of $\phi = (x^2 + y^2 + z^2)$ at the point p(3,1,2) in the direction of the vector $yz\hat{i} + xz\hat{j} + xy\hat{k}$ (10mks)
- b) A fluid motion is given by $\hat{V} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$, show that the motion is irrotational and hence find the velocity potential. (10mks)

QUESTION FOUR 20 MKS

- a) If $\hat{F} = 2z\hat{i} x\hat{j} + y\hat{k}$, evaluate $\iiint \hat{F} dv$ where v is the region bounded by the surfaces $x = 0, y = 0, x = 2, y = 4, z = x^2, z = 2$ (10mks)
- b) Use Greens theorem to evaluate $\int_{c} xy dx + x^2 dy$ where *c* is the boundary described counter clockwise of the triangle with vertices (0,1), (1,0), (1,1) (10mks)

QUESTION FIVE 20MKS

Show that $\iint_{s} \hat{F} \cdot \hat{n} ds = \frac{3}{2}$ where $\hat{F} = 4xz\hat{i} - y^{2}\hat{j} + yz\hat{k}$ and *s* is the surface of the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1 (20mks)