

Date: DECEMBER 2020

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

SEPTEMBER-DECEMBER 2020 TRISEMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

MAT 330: ORDINARY DIFFERENTIAL EQUATIONS II

Date: DECEMBER 2020	Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions	
1. a) (i)State existence and uniqueness the	orem for linear initial-value problems.
(ii) Show that the initial value problem	(2 marks)
	I
$(x + 1)y'' + 4y' = x^2 + 1, y(1) = 2, y'(1) = -5$ on interval $-\infty < x < \infty$ does	
not satisfy the above theorem in (i)	(2 marks)
(iii) Indicate an interval for which a u	nique solution will exist (2 marks)
 b) Use the Wronskian to show that the fu dependent. 	nctions e^x , e^{-x} and $sinhx$ are linearly (6 marks)
c) Show that $y_1 = x$ is a solution of $2x^2y'$	y' + xy' - y = 0 (3 Marks)
i. Use the method of reduction of order to find a second linearly independent solution of this differential equation and write the general solution	
	(5 marks)
d) Find the order and degree of $e^x y'' - 3$	$(y')^2 + 2xy = xe^x$ and write the
differential equation in normal form	(4 marks)
e) Distinguish between ordinary point a	nd singular point (2 Marks)

Cuea/ACD/EXM/DECEMBER 2020/ FACULTY OF SCIENCE

Page 1

ISO 9001:2015 Certified by the Kenya Bureau of Standards

f) At which point does the following differential equation have sing	ular points
(i) $(1-x^2)y'' - 2xy' + 6y = 0$ (ii) $(x^2 + 1)y'' + 6xy' - 2y = 0$ 2. Solve the differential equation $(1-x^2)y'' - 2xy' + 12y = 0$ by assusive solution in power series form is valid near the origin 3. a (i) Show that $y_1 = \cos x$ and $y_2 = \sin x$ are solutions of $y'' + y = 0$	2 marks) 2 marks) uming a 20 marks
	(4 marks)
ii) Show that $y = c_1 \cos x + c_2 \sin x$ is also a solution where c_1 and c_2 are	
arbitrary constants	(3 marks)
b (i) Show that $y_1 = e^{-x}$ is a solution of $y'' + 3y' + 2y = 0$	(3 marks)
ii) Use the method of reduction of order to find a second linearly	independent
solution of this differential equation	(8 marks)
iii) Write the general solution4. a) Determine whether the following are linearly dependent or independent	(2 marks) ent by using
the Wronskian test	
 i) 1,5,x ii) sin 3x, cos3x b) Test for exactness and solve (1 + x²)y'' + 4xy' + 2y = sec²x given y = 0, y' = 1 when x = 0 	(5 marks) (5 marks) that (10 marks)
5 a) Solve $y'' - 2 \tan x y' + 5y = 0$	(10 marks)
b) Show that the functions $f(x) = x^2$ and $g(x) = \sum_{n=1}^{\infty} An \sin nx$ are orthogonal	ogonal to
each other in the in the interval $-\pi \leq x \leq \pi$, and then obtain a corresponding	
orthogonal set	(10 marks)

Cuea/ACD/EXM/DECEMBER 2020/ FACULTY OF SCIENCE

Cuea/ACD/EXM/DECEMBER 2020/ FACULTY OF SCIENCE

END