

## THE CATHOLIC UNIVERSTTY OF EASTERN AFRICA

A. M. E. C. E. A<br>MAIN EXAMINATION<br>P.O. Box 62157<br>00200 Nairobi - KENYA<br>Telephone: 891601-6<br>Fax: 254-20-891084<br>E-mail:academics@cuea.edu

## SEPTEMBER-DECEMBER 2020 TRISEMESTER

## FACULTY OF SCIENCE

## DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

## MAT 204: LINEAR ALGEBRA II

| Date: DECEMBER 2020 | Duration: 2 Hours |
| :--- | :---: |
| INSTRUCTIONS: Answer any THREE Questions |  |

1 a)Consider the functions $\sin t$ and $\cos t$ in the vector space $C[-\pi, \pi]$ of continuous functions on the closed interval $[-\pi, \pi]$. Show that $\sin t$ and $\cos t$ are orthogonal functions
(5 marks)
b) Find the characteristic polynomial $\Delta(t)$ ) of $A=\left[\begin{array}{ll}3 & -2 \\ 9 & -3\end{array}\right]$
(5 marks)
c) Find $k$ so that $u=(1,-2,4 k, 3)$ and $v=(3,2 k, 0,0)$ in $R^{4}$ are orthogonal
(5 marks)
d) Determine whether following matrices are positive definite
i) $\left[\begin{array}{ll}4 & 2 \\ 2 & 1\end{array}\right]$
(3 marks)
ii) $\left[\begin{array}{cc}6 & -7 \\ -7 & 9\end{array}\right]$
(3 marks)
e) Consider vectors $u=(1,3,-6,4)$ and $v=(3,5,1,-2)$ in $R^{4}$ find
i. $\|u\|_{\infty}$
(2 marks
ii. $\quad d_{1}(u, v)$
(3 marks)
f) Let $V$ be the vector space of functions with basis $S=\left\{\operatorname{sint}, \cos t, e^{3 t}\right\}$ and let $D: V \rightarrow V$ be the differential operator defined by $D(f(t))=\emptyset f(t)$ compute the matrix representing $D$ in the basis $s$
(4 marks)
2 a) Let $V$ be the vector space of polynomial $f(t)$ with inner product
$\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$ Apply Gram-Schmidt or orthogonalization process to $\left\{1, t^{-1}, t^{2}, t^{3}\right\}$ to find an orthogonal basis $\left\{f_{0}, f_{1}, f_{2}, f_{3}\right\}$ with integers coefficients for $p_{3}(t)$
b) Given vectors $u=(0,-8,3)$ and $V=(-4,3,-3)$ in $\mathrm{R}^{3}$ find
i. $\|v\|_{1}$
(3 marks)
ii. $\quad d_{\infty}(u, v)$
(4 marks)
iii. $\quad d_{2}(u, v)$

3 a) Verify each of the following
i. Parallelogram law $\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2}$
ii. Prove $\langle u, v\rangle=\frac{1}{4}\left[\|u+v\|^{2}-\|u-v\|^{2}\right]$
b) Find the matrix representation of each of the following linear operations $F$ on $R^{3}$ relative to the usual basis $E\left\{e_{1}, e_{2}, e_{3}\right\}$ of R
i) $\quad F$ defined by $F(x, y, z)=(x+2 y-3 z, 4 x-5 y-6 z, 7 x+8 y+9 z)$
(4 marks)
ii) $\quad F$ defined by the $3 \times 3$ matrix $A=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 2 & 3 & 4 \\ 5 & 5 & 5\end{array}\right]$
iii) $\quad F$ defined by $F\left(e_{1}\right)=(1,3,5), F\left(e_{2}\right)=(2,4,6), F\left(e_{3}\right)=(7,7,7)$
(6 marks)
4 a) The vectors $u_{1}(1,1,0), u_{2}=(1,2,3), u_{3}(1,3,5)$ form a basis $S$ for Euclidean space $R^{3}$. Find the matrix A that represents the inner product in $R^{3}$ relative to the basis S
(7 marks)
b) Let $S$ consist of the following vectors $\operatorname{in} R^{4} u_{1}=(1,1,0,-1), u_{2}=$ $(1,2,1,3), u_{3}=(1,1-9,2), u_{4}=(16,-13,1,3)$
i. Show that $S$ is orthogonal and a basis of $R^{4} \quad$ (7 marks)
ii. Find the coordinates of an arbitrary vector $V=(a, b, c . d)$ in $R^{4}$ relative to the basis
(6 marks)
5. a ) Find the characteristic polynomial $\Delta(t)$ of each of the following matrices

| i. | $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 0 & 4 \\ 6 & 4 & 5\end{array}\right]$ | (8 marks) |
| ---: | :--- | ---: |
| ii. | $B=\left[\begin{array}{ccc}1 & 6 & -2 \\ -3 & 2 & 0 \\ 0 & 3 & -4\end{array}\right]$ | (7 marks) |
| b) Let $A$ | $=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$, find all eigenvalues | (5 marks) |

*END*

