

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

SEPTEMBER-DECEMBER 2020 TRISEMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

MAT 204: LINEAR ALGEBRA II

Date:	DECE	MBER 2020 Duratic	on: 2 Hours	
INSTRUCTIONS: Answer any THREE Questions				
1	cont are	a)Consider the functions $sin t and cos t$ in the vector space $C[-\pi, \pi]$ of continuous functions on the closed interval $[-\pi, \pi]$. Show that sin t and cos t are orthogonal functions (5 marks)		
	b)	Find the characteristic polynomial $\Delta(t)$ of $A = \begin{bmatrix} 3 & -2 \\ 9 & -2 \end{bmatrix}$	$\binom{2}{3}$ (5 marks)	
	c)	Find k so that $u = (1, -2, 4k, 3)$ and $v = (3, 2k, 0, 0)$ i orthogonal	n <i>R</i> ⁴ are (5 marks)	
	d) Determine whether following matrices are positive definite			
		i) $\begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$	(3 marks)	
		ii) $\begin{bmatrix} 6 & -7 \\ -7 & 9 \end{bmatrix}$	(3 marks)	
	e) Consider vectors $u = (1, 3, -6, 4)$ and $v = (3, 5, 1, -2)$ in \mathbb{R}^4 find			
		i. $\ u\ _{\infty}$	(2 marks	
		ii. $d_1(u,v)$	(3 marks)	
	f)	Let <i>V</i> be the vector space of functions with basis $S = \{$ and let $D: V \rightarrow V$ be the differential operator defined by	$D(f(t)) = \emptyset f(t)$	

compute the matrix representing *D* in the basis *s* (4 marks) 2 a) Let *V* be the vector space of polynomial f(t) with inner product

Cuea/ACD/EXM/DECEMBER 2020/ FACULTY OF SCIENCE

ISO 9001:2015 Certified by the Kenya Bureau of Standards

 $\langle f,g \rangle = \int_{-1}^{1} f(t)g(t) dt$ Apply Gram-Schmidt or orthogonalization process to $\{1, t^{-1}, t^2, t^3\}$ to find an orthogonal basis $\{f_0, f_1, f_2, f_3\}$ with integers coefficients for $p_3(t)$ (10 marks) b) Given vectors u = (0, -8, 3) and V = (-4, 3, -3) in R³find i. $\|v\|_1$ (3 marks)

ii.
$$d_{\infty}(u,v)$$
 (4 marks)

iii.
$$d_2(u, v)$$
 (3 marks)

3 a) Verify each of the following

i. Parallelogram law
$$||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2$$

ii. Prove $\langle u, v \rangle = \frac{1}{4}[||u + v||^2 - ||u - v||^2]$ (3 marks)

b) Find the matrix representation of each of the following linear operations F

on R^3 relative to the usual basis $E\{e_1, e_2, e_3\}$ of R

i) F defined by F(x, y, z) = (x + 2y - 3z, 4x - 5y - 6z, 7x + 8y + 9z)(4 marks) ii) F defined by the 3×3 matrix $A = \begin{bmatrix} -1 & 1 & 1 \\ 2 & 3 & 4 \\ 5 & 5 & 5 \end{bmatrix}$ (2 marks) iii) F defined by $F(e_1) = (1, 3, 5), F(e_2) = (2, 4, 6), F(e_3) = (7, 7, 7)$

(6 marks)

4 a) The vectors $u_1(1, 1, 0), u_2 = (1, 2, 3), u_3(1, 3, 5)$ form a basis S for Euclidean space R^3 . Find the matrix A that represents the inner product in R^3 relative to the basis S (7 marks)

b) Let S consist of the following vectors in $R^4 u_1 = (1, 1, 0, -1), u_2 = (1, 2, 1, 3), u_3 = (1, 1 - 9, 2), u_4 = (16, -13, 1, 3)$

- i. Show that S is orthogonal and a basis of R^4 (7 marks)
- ii. Find the coordinates of an arbitrary vector V = (a, b, c. d) in R^4 relative to the basis (6 marks)

5. a) Find the characteristic polynomial $\Delta(t)$ of each of the following matrices

i.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & 4 \\ 6 & 4 & 5 \end{bmatrix}$$
 (8 marks)
ii. $B = \begin{bmatrix} 1 & 6 & -2 \\ -3 & 2 & 0 \\ 0 & 3 & -4 \end{bmatrix}$ (7 marks)
b) Let $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$, find all eigenvalues (5 marks)

END

Cuea/ACD/EXM/DECEMBER 2020/ FACULTY OF SCIENCE

ISO 9001:2015 Certified by the Kenya Bureau of Standards