THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

AUGUST - DECEMBER 2018 TRIMESTER

FACULTY OF COMMERCE

DEPARTMENT OF ACCOUNTING AND FINANCE

ODEL / REGULAR PROGRAMME

CID 081: INTERMEDIATE BUSINESS MATHEMATICS

Date: DECEMBER 2018Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Q1.	a)	Use Pasca i) (1 - ii) (a -		(3 marks) (3 marks)	
	b)	probability the probab i) ii) iii) iv) v)	nent test is repeated on three separate occasions. that the test is successful on each occasion is 0.3 pility that out of the three tests, there are: 0 1 2 3 successes in total. Tabulate the number of successes against their re probabilities as calculated in i) to ii) above.	5. calculate (3 marks) (3 marks) (3 marks) (3 marks)	
	c)	The total cost function of output is given by $C = \frac{2}{3}x + \frac{35}{2}$. Find:			
		i) ii)	Cost when output is 4 units. Average cost of output of 10 units Marginal cost when output is 3 units.	(3 marks) (3 marks) (3 marks)	
Q2.	A com		must be chosen from 3 women and 4 men. Calcumany ways the committee can be chosen?	late: (5 marks)	

Cuea/ACD/EXM/AUGUST - DECEMBER 2018/ACCOUNTING AND FINANCE

Page 1

b) In how many ways 2 men and 2 women can be chosen? (5 marks)

c) The probability that committee consists of 2 men and 2 women.

d) The probability that committee consists of at least 2 women.

(5 marks) Q3. a) Differentiate the following: If $y = x^2 + 2x + 9e^x - \log x$ (4 marks) i) $X^{2}(x + 1)(x^{3} + 3x + 1)$ ii) (4 marks) $X^{3} + 5x^{2} - 7x + 2$ four times w.r.t 'x' iii) (4 marks) Integrate the following: b) $\int (2x^2 - 6x + 4)^{3/2}(2x - 3)dx$ (4 marks) i) ii) $\int x^n \log x \, dx$ (4 marks) Use the binomial theorem to expand: Q4. a) $(1 + x)^4$ (4 marks) i) (1-2x)³ ii) (4 marks) iii) $(1 - 3x)^4$ (4 marks)

b) Find the coefficient of x^5 in the expression of $(1 + 4x)^9$ (4 marks) a) Find the first four terms in the expression $(2 + \frac{x}{3})^{12}$ (4 marks)

CID 081: INTERMEDIATE BUSINESS MATHEMATICS

1.
$$0! = 1$$

2. ${}^{n}P_{r} \text{ or } {}_{n}P_{r} = \frac{n!}{(n-1)!}$
3. ${}^{n}P_{n} = n!$
4. $n! = n(n-1)(n-2)(n-3)...[n-(r-1)]$
5. ${}^{n}P_{r} = n(n-1)(n-2)(n-3)...[n-(r-1)]$
6. ${}^{n}C_{r} \text{ or } {}_{n}C_{n} = \frac{n(n-1)(n-2)(n-3)...[n-(r-1)]}{r!}$
7. ${}^{n}C_{r} = \frac{n!}{r!(n-1)!}$ Where $r = 0.1,2,3... n$
8. ${}^{n}C_{0} = 1$
9. ${}^{n}C_{n} = 1$
10. ${}^{n}C_{n-r} = {}^{n}C_{r}$, where $r = 0,1,2,3... n$
11. ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
12. ${}^{n}C_{n-r} = \frac{n!}{(n-1)!r!}$ where $r = 0,1,2,3... n$
13. $\frac{d}{dx}(x^{n}) = nx^{n-1}$
14. $\frac{d}{dx}$ (constant) = 0 (zero)
15. $\frac{d}{dx}$ (constant x function) = constant x $\frac{d}{dx}$ x function

Cuea/ACD/EXM/AUGUST - DECEMBER 2018/ACCOUNTING AND FINANCE

Page 2

16.
$$\frac{d}{dx} (u + v) = \frac{du}{dx} + \frac{dv}{dx}$$

17. $\frac{d}{dx} (u + v + w + ...) = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} + ...$
18. $\frac{d}{dx} (u - v) = \frac{du}{dx} - \frac{dv}{dx}$
19. $\frac{d}{dx} (u - v) = \frac{du}{dx} - \frac{dv}{dx} - \frac{dw}{dx} - ...$
20. $\frac{d}{dx} (uv) = \frac{u^{d}w}{dx} (v) + v \frac{du}{dx} (u)$
21. $\frac{d}{dx} (\frac{u}{v}) = \frac{v^{d}\frac{du}{dx} - u \frac{dv}{dx}}{v^2} = \frac{D^{r} (\frac{du}{dx} (wr) - (Wr) \frac{dv}{dx} (D^{r})}{(D^{r})^2}$
22. $\frac{dv}{dx} = \frac{du}{dx}$
23. $\frac{d}{dx} (x^2) = a^{x} \log a$
24. $\frac{d^{2}y}{dx^{2}} = \frac{dx}{dx} \cdot \frac{dv}{dx}$
25. $\frac{d}{dx} (uvw) = uv \frac{dw}{dw} + uw \frac{dv}{dx} + vw \frac{du}{dx}$
26. $\int x^{n} dx = \frac{x^{n+1}}{n+1} + c$
27. $\int \frac{1}{x} dx = \log a x + c$
28. $\int e^{ax} dx = \frac{a^{x}}{a} + c$
29. $\int a^{x} dx = \frac{a^{x}}{a} + c$
29. $\int a^{x} dx = \frac{a^{x}}{a} + c$
20. $\int k dx = kx + c$
31. $\int e^{x} dx = e^{x} + c$
32. $\int 1 . dx = x + c$
33. $\int (ax + b)^{n} dx = \frac{1}{a} \frac{(ax+b)^{n+1}}{(n+1)} + c$
34. $\int \frac{dx}{dx} dx = \frac{1}{a} e^{ax+b} + c$
36. $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx + c OR \int uv dx = uv^{1} + u^{1}v^{2} + u^{n}v^{3} - u^{m}v^{4} - ...$
37. $\int_{-a}^{a} f(x) dx = [g(x) + c]_{a}^{h} = [g(b) + c] - \{g(a) + c\} = [g(b) - g(a)]$
39. $\int \frac{f'(x)}{f(x)} dx$ where f(x) is the derivative of f(x) Put f(x) = t, then f(x) dx = dt Thus $\int \frac{f'(x)}{t} dx = \log f(x)$

Cuea/ACD/EXM/AUGUST - DECEMBER 2018/ACCOUNTING AND FINANCE

Page 3

$$40. \int [f(x)]^{n} f'(x) dx, n \neq -1 \text{ put } f(x) = t, \text{ then } f'(x) dx = dt$$

$$Thus [f(x)]^{n} f'(x) dx = \int t^{n} dt = \frac{t^{n+1}}{n+1} = \frac{[f(x)]^{n+1}}{n+1}$$

$$41. \int f'(ax + b) dx, \text{ put } (ax + b) = i, \text{ then } adx = dt, dx = \frac{dt}{a}$$

$$Thus \int f'(ax + b) dx = \int f'(t) \frac{dt}{a} = \frac{1}{a} \int f'(t) dt = \frac{1}{a} [f(t)] = \frac{f(ax+b)}{a}$$

$$42. \text{ Revenue = price times quantity}$$

$$R(x) = Px$$

$$43. \text{ Profit = revenue minus cost}$$

$$P(x) = R(x) - C(x)$$

$$44. \text{ Breakeven point (BEP)}$$

$$\text{Revenue = Cost}$$

$$R(x) = C(x)$$

$$Profit = zero (0)$$

$$P(x) = 0$$

END