A. M. E. C. E. A
MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

JANUARY - APRIL 2019 TRIMESTER
FACULTY OF COMMERCE

DEPARTMENT OF ACCOUNTING AND FINANCE

SPECIAL EXAMINATION

CID 081: INTERMEDIATE BUSINESS MATHEMATICS

Date: JANUARY 2019 Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions
Q1. a) The weekly cost to produce x widgets is given by

$$
C(x)=75,000+100 x-0.03 x^{2}+0.000004 x^{3} \quad 0 \leq x \leq 10000
$$

and the demand function for the widgets is given by,

$$
p(x)=200-0.005 x \quad 0 \leq x \leq 10000
$$

Determine the marginal cost, marginal revenue and marginal profit when 2500 widgets are sold and when 7,500 widgets are sold. Assume that the company sells exactly what they produce.
(10 marks)
b) A committee of four (4) must be chosen from 3 women and 4 men. Calculate:
a) In how many ways the committee can be chosen
b) In how many ways 2 men and 2 women can be chosen
c) Probability that the committee consists of 2 men and 2 women.
d) The probability that committee consists of at least of 2 women.
(10 marks)
c) Integrate the following:
a) $\int\{(3 x-1)(3 x+1)\} d x$
b) $\left.\int 3 e^{x}-5 x\right) \mathrm{dx}$
(10 marks)
Q2. a) Write down the first five terms of the sequence given by $u_{n}=(-1)^{n+1} / n$
b) An Arithmetic Progression (AP) is given by $k, 2 k / 3, k / 3,0, \ldots$.
i) Find the sixth term.
(2 marks)
ii) Find the nth term.
(2 marks)
c) Find the sum of the Arithmetic series with the first term 1, common difference 3, and last term 100.
c) An Arithmetic progression has 3 as its first term. Also the sum of the first 8 terms is twice the sum of the first 5 terms. Find the common difference.
(3 marks)
d) How many terms in the geometric progression, 1, 1.1, 1.21, 1.331, ... will be needed so that the sum of the first n terms is greater than 20 ?
(4 marks)
Q3. Differentiate the following;
a) $\quad \frac{d}{d x}\left(e^{3 x^{2}}\right)$
(5 marks)
b) $\quad \frac{d}{d x}\left(e^{x^{3}+2 x}\right)$
(5 marks)
c) $\quad \ln \left(2 x^{3}+5 x^{2}-3\right)$
d) If $u=2 x^{2}+3 x y+4 y^{2}$ find $\frac{d u}{d x}$ and $\frac{d u}{d y}$

Q4. a) Four firms P, Q, R and S submit tenders for two jobs 1 and 2 each of which must go to a different firm. List the possible ways that the jobs can be allocated.
(5 marks)
b) Out of the five people in an office A, B, C, D and E say, just three are to be selected to go to an exhibition. In how many ways can the three be chosen?
(5 marks)
c) How many ways are there of arranging 3 different jobs between 5 men, when any man can do only one job? What is the probability that man A will be doing job 1 ?
(5 marks)
d) Use the binomial theorem to expand
a) $(1+x)^{4}$
b) $(1-3 x)^{4}$
(5 marks)

CID 081 INTERMEDIATE BUSINESS MATHEMATICS FORMULAE

1. $0!=1$
2. ${ }^{n} \operatorname{Pror}{ }_{n} P r=\frac{n!}{(n-1)!}$
3. ${ }^{n} P_{n}=n$!
4. $n!=n(n-1)(n-2)(n-3) \ldots 1$
5. ${ }^{n} P_{r}=n(n-1)(n-2)(n-3) \ldots[n-(r-1)]$
6. ${ }^{\mathrm{n}} \mathrm{C}_{r}$ or ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=\frac{n(n-1)(n-2)(n-3) \ldots[n-(r-1)]}{r!}$
7. ${ }^{n} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-1)!}$ Where $\mathrm{r}=0.1,2,3 \ldots \mathrm{n}$
8. ${ }^{\mathrm{n}} \mathrm{C}_{0}=1$
9. ${ }^{n} C_{n}=1$
10. ${ }^{n} C_{n-r}={ }^{n} C r$, where $r=0,1,2,3 \ldots n$
11. ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
12. ${ }^{n} C_{n-r}=\frac{n!}{(n-1)!r!}$ where $r=0,1,2,3 \ldots n$
13. $\frac{d}{d x}\left(x^{n}\right)=\mathrm{n} x^{n-1}$
14. $\frac{d}{d x}$ (constant) $=0$ (zero)
15. $\frac{d}{d x}$ (constant x function) $=$ constant $\mathrm{x} \frac{d}{d x} \times$ function
16. $\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}$
17. $\frac{d}{d x}(\mathrm{u}+\mathrm{v}+\mathrm{w}+\ldots)=\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}+\ldots$
18. $\frac{d}{d x}(\mathrm{u}-\mathrm{v})=\frac{d u}{d x}-\frac{d v}{d x}$
19. $\frac{d}{d x}(\mathrm{u}-\mathrm{v}-\mathrm{w}-\ldots)=\frac{d u}{d x}-\frac{d v}{d x}-\frac{d w}{d x}-\ldots$
20. $\frac{d}{d x}(\mathrm{uv})=\mathrm{u} \frac{d v}{d x}(\mathrm{v})+\mathrm{v} \frac{d u}{d x}(\mathrm{u})$
21. $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x} u-u \frac{d v}{d x} v}{v^{2}}=\frac{D r)\left(\frac{d u}{d x}(N r)-(N r) \frac{d v}{d x}(D r)\right.}{(D r)^{2}}$
22. $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
23. $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$
24. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x} \cdot \frac{d y}{d x}$
25. $\frac{d}{d x}(\mathrm{uvw})=\mathrm{uv} \frac{d w}{d x}+\mathrm{uw} \frac{d v}{d x}+\mathrm{vw} \frac{d u}{d x}$
26. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+\mathrm{C}$
27. $\int \frac{1}{x} d x=\log _{\mathrm{e}} \mathrm{X}+\mathrm{C}$
28. $\int e^{a x} d x=\frac{e^{a x}}{a}+\mathrm{C}$
29. $\int a^{x} d x=\frac{a^{x}}{\log a}+\mathrm{C}$
30. $\int k d x=k x+c$
31. $\int e^{x} d x=e^{x}+\mathrm{C}$
32. \int 1. $d x=x+c$
33. $\int(a x+b)^{n} d x=\frac{1}{a} \cdot \frac{(a x+b)^{n+1}}{(n+1)}+\mathrm{C}$
34. $\int \frac{d x}{a x+b}=\frac{1}{a} \cdot \log (\mathrm{ax}+\mathrm{b})+\mathrm{c}$
35. $\int e^{a x+b} d x=\frac{1}{a} \cdot e^{a x+b}+\mathrm{c}$
36. $\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x+c$ OR $\int u v d x=u v^{1}+u^{\prime} v^{2}+u{ }^{\prime \prime} v^{3}-u^{\prime \prime \prime} v^{4}-\ldots$
37. $\int_{-a}^{a} f(x) d x=\left\{\begin{array}{cc}2 \int_{0}^{a} f(x) d x=\text { if } f(x) \text { is even } \\ 0 & \text { if } f(x) \text { is } 0 d d\end{array}\right.$
38. $\int_{a}^{h} f(x) d x=[\mathrm{g}(\mathrm{x})+\mathrm{c}]_{a}^{h}$

$$
\begin{aligned}
& =\{g(b)+c\}-\{g(a)+c\} \\
& =g(\mathrm{~b})-\mathrm{g}(\mathrm{a})
\end{aligned}
$$

39. $\int \frac{f(x)}{f(x)} d x$ where $\mathrm{f}^{\prime}(\mathrm{x})$ is the derivative of $\mathrm{f}(\mathrm{x})$

Put $\mathrm{f}(\mathrm{x})=\mathrm{t}$, then $\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}=\mathrm{dt}$
Thus $\int \frac{f f(x)}{f(x)} d x=\int \frac{d t}{t} \log \mathrm{t}=\log \mathrm{f}(\mathrm{x})$
40. $\int[f(x)]^{n} f^{\prime}(x) d x, n \neq-1$ put $\mathrm{f}(\mathrm{x})=\mathrm{t}$, then $\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}=\mathrm{dt}$

Thus $[f(x)]^{n} f^{\prime}(x) d x=\int t^{n} d t=\frac{t^{n+1}}{n+1}=\frac{[f(x)]^{n+1}}{n+1}$
41. $\int f^{\prime}(a x+b) d x$, put $(\mathrm{ax}+\mathrm{b})=\mathrm{i}$, then $\mathrm{adx}=\mathrm{dt}, \mathrm{dx}=\frac{d t}{a}$

Thus $\int f^{\prime}(a x+b) d x=\int f^{\prime}(t) \frac{d t}{a}=\frac{1}{a} \int f^{\prime}(t) d t=\frac{1}{a}[f(t)]=\frac{f(a x+b)}{a}$
42. Revenue $=$ price times quantity

$$
R(x)=P x
$$

43. Profit $=$ revenue minus cost

$$
P(x)=R(x)-C(x)
$$

44. Breakeven point (BEP)

$$
\text { Revenue }=\text { Cost } \quad R(x)=C(x)
$$

Profit = zero (0)
$P(x)=0$

END

