THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

JANUARY – APRIL 2019 TRIMESTER

FACULTY OF COMMERCE

DEPARTMENT OF ACCOUNTING AND FINANCE

SPECIAL EXAMINATION

CID 081: INTERMEDIATE BUSINESS MATHEMATICS

Date: JANUARY 2019Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Q1.	a)	The weekly cost to produce x widgets is given by	
		$C(x) = 75,000 + 100x - 0.03x^2 + 0.000004x^3 \qquad 0 \le x$	≤10000
		and the demand function for the widgets is given by,	
		$p(x) = 200 - 0.005x \qquad \qquad 0 \le x \le 10000$	
		Determine the marginal cost, marginal revenue and marginal 2500 widgets are sold and when 7,500 widgets are sold. As company sells exactly what they produce.	-
	b)	A committee of four (4) must be chosen from 3 women and Calculate:	4 men.
		 a) In how many ways the committee can be chosen b) In how many ways 2 men and 2 women can be chos c) Probability that the committee consists of 2 men and d) The probability that committee consists of at least of 	2 women.
	c)	Integrate the following:	
		a) $\int \{(3x - 1)(3x + 1)\} dx$	
		b) $\int 3e^x - 5x) dx$	(10 marks)
Q2.	a)	Write down the first five terms of the sequence given by u_n =	= (-1) ⁿ⁺¹ /n (3 marks)
	b)	An Arithmetic Progression (AP) is given by k, 2k/3, k/3, 0,	. ,
		i) Find the sixth term.	(2 marks)
		ii) Find the <i>nth</i> term.	(2 marks)
Cuea/	ACD/E	XM/JANUARY – APRIL 2019/ACCOUNTING AND FINANCE	Page 1

iii)	If the 20 th term is equal to 15, find <i>k</i> .	
------	--	--

- c) Find the sum of the Arithmetic series with the first term 1, common difference 3, and last term 100. (3 marks)
- c) An Arithmetic progression has 3 as its first term. Also the sum of the first 8 terms is twice the sum of the first 5 terms. Find the common difference.
 (3 marks)
- d) How many terms in the geometric progression, 1, 1.1, 1.21, 1.331, ...will be needed so that the sum of the first n terms is greater than 20?

(4 marks)

- Differentiate the following; a) $\frac{d}{dx}(e^{3x^2})$ (5 marks) b) $\frac{d}{dx}(e^{x^3+2x})$ (5 marks) c) In $(2x^3 + 5x^2 - 3)$ (5 marks) d) If $u = 2x^2 + 3xy + 4y^2$ find $\frac{du}{dx}$ and $\frac{du}{dy}$ (5 marks)
- Q4. a) Four firms P, Q, R and S submit tenders for two jobs 1 and 2 each of which must go to a different firm. List the possible ways that the jobs can be allocated. (5 marks)
 - b) Out of the five people in an office A, B, C, D and E say, just three are to be selected to go to an exhibition. In how many ways can the three be chosen? (5 marks)
 - c) How many ways are there of arranging 3 different jobs between 5 men, when any man can do only one job? What is the probability that man A will be doing job 1?
 (5 marks)
 - d) Use the binomial theorem to expand
 - a) $(1 + x)^4$
 - b) $(1 3x)^4$

(5 marks)

CID 081 INTERMEDIATE BUSINESS MATHEMATICS FORMULAE

1. 0! = 1

Q3.

- 2. ${}^{n}\mathsf{Pror} {}_{n}\mathsf{Pr} = \frac{n!}{(n-1)!}$
- 3. ${}^{n}P_{n} = n!$
- 4. n! = n(n-1)(n-2)(n-3)...1

Cuea/ACD/EXM/JANUARY - APRIL 2019/ACCOUNTING AND FINANCE

Page 2

5.
$${}^{n}P_{r} = n(n-1)(n-2)(n-3)...[n-(r-1)]$$

6. ${}^{n}C_{r} \text{ or } {}_{n}C_{n} = \frac{n(n-1)(n-2)(n-3)...[n-(r-1)]}{r!}$
7. ${}^{n}C_{r} = \frac{n!}{r!(n-1)!}$ Where $r = 0.1,2,3...n$
8. ${}^{n}C_{0} = 1$
9. ${}^{n}C_{n} = 1$
10. ${}^{n}C_{n-r} = {}^{n}C_{r}$, where $r = 0,1,2,3...n$
11. ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
12. ${}^{n}C_{n-r} = \frac{n!}{(n-1)!r!}$ where $r = 0,1,2,3...n$
13. $\frac{d}{dx}(x^{n}) = nx^{n-1}$
14. $\frac{d}{dx}(constant) = 0$ (zero)
15. $\frac{d}{dx}(constant x function) = constant x $\frac{d}{dx} x$ function
16. $\frac{d}{dx}(u + v) = \frac{du}{dx} + \frac{dv}{dx}$
17. $\frac{d}{dx}(u + v + w + ...) = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} + ...$
18. $\frac{d}{dx}(u - v) = \frac{du}{dx} - \frac{dv}{dx}$
19. $\frac{d}{dx}(u - v - w - ...) = \frac{du}{dx} - \frac{dv}{dx} - \frac{dw}{dx} - ...$
20. $\frac{d}{dx}(uv) = u\frac{dv}{dx}(v) + v\frac{du}{dx}(u)$
21. $\frac{d}{dx}(\frac{u}{v}) = \frac{v\frac{du}{dx}u - u\frac{dv}{dx}v}{v^{2}} = \frac{Dr)(\frac{du}{dx}(Nr) - (Nr)\frac{dv}{dx}(Dr)}{(Dr)^{2}}$
22. $\frac{dy}{dx} = \frac{\frac{dy}{dx}}{\frac{dx}{dx}}$
23. $\frac{d}{dx}(a^{x}) = a^{x}\log a$
24. $\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \cdot \frac{dy}{dx}$
25. $\frac{d}{dx}(uvw) = uv\frac{dw}{dx} + uw\frac{dv}{dx} + vw\frac{du}{dx}$$

Cuea/ACD/EXM/JANUARY – APRIL 2019/ACCOUNTING AND FINANCE

Page 3

27.
$$\int \frac{1}{x} dx = \log_{e^{x}} + c$$

28.
$$\int e^{ax} dx = \frac{e^{ax}}{\log a} + c$$

29.
$$\int a^{x} dx = \frac{a^{x}}{\log a} + c$$

30.
$$\int kdx = kx + c$$

31.
$$\int e^{x} dx = e^{x} + c$$

32.
$$\int 1. dx = x + c$$

33.
$$\int (ax + b)^{n} dx = \frac{1}{a} \cdot \frac{(ax+b)^{n+1}}{(n+1)} + c$$

34.
$$\int \frac{dx}{ax+b} = \frac{1}{a} \log (ax + b) + c$$

35.
$$\int e^{ax+b} dx = \frac{1}{a} \cdot e^{ax+b} + c$$

36.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx + c \text{ OR } \int uv dx = uv^{1} + u'v^{2} + u''v^{3} - u'''v^{4} - ...$$

37.
$$\int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx = if f(x) \text{ is even} \\ 0 & if f(x) \text{ is 0 } dd \end{cases}$$

38.
$$\int_{a}^{h} f(x) dx = [g(x) + c]_{a}^{h} = \{g(b) + c\} - \{g(a) + c\} = g(b) - g(a)$$

39.
$$\int \frac{f'(x)}{f(x)} dx \text{ where } f(x) \text{ is the derivative of } f(x)$$

Put $f(x) = t$, then $f(x)dx = dt$
Thus
$$\int \frac{f'(x)}{f(x)} dx = \int \frac{dt}{t} \log t = \log f(x)$$

40.
$$\int [f(x)]^{n} f'(x) dx, n \neq -1 \text{ put } f(x) = t$$
, then $f(x)dx = dt$
Thus $[f(x)]^{n} f'(x) dx = \int t^{n} dt = \frac{t^{n+1}}{n+1} = \frac{[f(x)]^{n+1}}{n+1}$
41.
$$\int f'(ax + b) dx, \text{ put } (ax + b) = i$$
, then $adx = dt$, $dx = \frac{dt}{a}$

Thus $\int f'(ax+b)dx = \int f'(t)\frac{dt}{a} = \frac{1}{a}\int f'(t)dt = \frac{1}{a}[f(t)] = \frac{f(ax+b)}{a}$ 42. Revenue = price times quantity

R(x) = Px43. Profit = revenue minus cost

Cuea/ACD/EXM/JANUARY – APRIL 2019/ACCOUNTING AND FINANCE

Page 4

P(x) = R(x) - C(x)44. Breakeven point (BEP)

Revenue = CostR(x) = C(x)Profit = zero (0)P(x) = 0

END

Cuea/ACD/EXM/JANUARY – APRIL 2019/ACCOUNTING AND FINANCE

Page 5