
ii) A magnetic flux of $400 \mu w b$ passing through a coil of 1200 turns is reversed in 0.1 seconds. Calculate the average value of the emf induced in the coil.
(3 marks)
Q2. a) Two capacitors A and B are connected in series across a 100 V supply and it is observed that the p.ds across them are 60 V and 40 V respectively. A capacitor of $2 \mu \mathrm{~F}$ is now connected in parallel with A and p.d across B rises to 90 V . Calculate the capacitance of A and B in microfarads.
(10 marks)
b) Derive a relationship for the total resistance when resistors are connected in parallel.
(4 marks)
c) Calculate the velocity of the electrons in a conductor having 10^{29} free electrons per cubic metre and a cross-sectional area of $2 \mathrm{~mm}^{2}$ when the current flow is 23 mA .
(6 Marks)
Q3. a) An electron of charge $e=1.6 \times 10^{-19} \mathrm{C}$ is situated in a uniform electric field of intensity $120000 \mathrm{~V} / \mathrm{m}$. Find the force on it, its acceleration and the time it takes to travel 20 mm from rest. (Electron mass, $\mathrm{m}=9.1 \times 10$ ${ }^{31} \mathrm{~kg}$).
(10 marks)
b) Two positive point charges of 15 and $10 \mu \mathrm{C}$ respectively are 10 cm apart. Find the work done in bringing them 4 cm closer so they are 6 cm apart.
(10 marks)
Q4. a) What is the peak value of an alternating current which produces three times the heat per second as a direct current of 2 A in a resistor R ?
(5 marks)
b) Determine the power flowing into an electrical sink for which the voltage is 340 sinwt V and current is 5.6 sinwt A , where $\mathrm{w}=0.2 \mathrm{~m} \mathrm{rad} / \mathrm{s}$. Also determine the energy absorbed (or generated) during a 10 s period starting at time, $\mathrm{t}=0$.
(8 marks)
c) An a.c voltage of 4 V peak is connected to a 100Ω resistor R .
i) What is the phase of current and voltage? (1mark)
ii) Calculate the current in R in mA .
(3marks)
iii) What is the power in R in mW ?
(3marks)
Q5. a) An alternating voltage has the equation
$V=141.4 \sin 377 t$
Determine the values of
i) Root mean square voltage
(3 marks)
ii) Frequency
(3 marks)
iii) The instantaneous voltage when $\mathrm{t}=3 \mathrm{~ms}$.
b) A circuit having a resistance of 12Ω, an inductance of 0.15 H and a capacitance of $100 \mu \mathrm{~F}$ in series, is connected across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate the
i) Impedance (4 marks)
ii) current
i) Voltage across R,L and C.
(3 marks)
ii) Phase difference between the current and the supply voltage

END

