[®] THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

AUGUST – DECEMBER 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR / PART TIME PROGRAMME

MAT 500: METHODS OF APPLIED MATHEMATICS

Date: DECEMBER 2018Duration: 3 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

- Q1. a) In Minkowiski space, define $x_1 = x$, $x_2 = y$, $x_3 = z$ and $x_0 = ct$. This is done so that the space time interval $dS^2 = dx_0^2 - dx_1^2 - dx_2^2 - dx_3^2$, where *c* is the velocity of light. Show that the metric in Minkowiski space is given by; $g_{ij} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$. (8 marks) b) The components of a tensor *A* is equal to the corresponding components
 - b) The components of a tensor A is equal to the corresponding components of a tensor B in one particular coordinate system. Show that A = B. (7 marks)
 - c) Consider the Kernel of an integral equation to be defined as K(x,t). Under what condition can the Kernel, K(x,t) be referred to as a separate or degenerate Kernel? (7 marks)
 - d) Show that $y(x) = x + \frac{4x^2}{3}$ is a solution to the Fred Holm integral equation; $y(x) = x + \lambda \int_0^1 (x^2 t) y(t) dt$. (8 marks)
- Q2. a) A Fred Holm integral equation of the second kind is given by; $y(x) = x + \lambda \int_0^1 (xt^2 + x^2t)y(t)dt.$ (12 marks) Solve for the solution of y(x).

Cuea/ACD/EXM/AUGUST – DECEMBER 2018 / MATHEMATICS AND COMPUTER SCIENCE Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

	b)	Use the anti-symmetry of ϵ_{ijk} to show that $\vec{A}.(\vec{A}X\vec{B}) = 0$.	(8 marks)
Q3.	a)	Considering a Fred Holm integral equation with separable c relation; $y(x) - \int_0^1 t(x-t)y(t)dt = 1$, for $0 \le x \le 1$.	lefined by the (14 marks)
	b)	Write $\nabla X(\nabla \phi)$ in ϵ_{ijk} notation so that it becomes zero (0).	(6 marks)
Q4.	a)	An integral equation is given by; $y(x) = \frac{2x}{3} + \int_0^1 xty(t)dt$. Sh $y(x) = x$ is a solution to the integral equation.	ow that (15 marks)
	b)	Let A_i, \dots, \dots, n . What will be the rank of its derivative?	(5 marks)
Q5.	a)	Verify that $\cos 2x$ is a solution to the Fred Holm integral equal second kind; $y(x) = \cos x + 3 \int_0^{\pi} K(x,t)y(t)dt$, Where, $K(x,t) = \begin{cases} \sin t \cos x, t < x \\ \sin x \cos t, t < \pi \end{cases}$	ation of the (15 marks)
	b) Show that the velocity of a fluid at any point is component of a		fa

b) Show that the velocity of a fluid at any point is component of a contravariant vector. (5 marks)
END