A. M. E. C. E. A
MAIN EXAMINATION
AUGUST - DECEMBER 2018 TRIMESTER
FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE
REGULAR PROGRAMME

QUESTION ONE

a) Show that for a simple random sample,
i) The sample mean \bar{y}, is an unbiased estimate of the population mean \bar{Y}.(6 marks)
ii) The estimate of the population total \hat{Y}, is an unbiased estimate of the population total Y.
(5 marks)
iii) Show that the sample variance s^{2} for a simple random sample is an unbiased estimate of the population variance S^{2}.
(7marks)
b) In a population with $N=6$, the values of the observations $y_{i}(i=1,2,34,5,6)$ are 8,3 , 1,11,4 and 7 .
i) Calculate the sample mean \bar{y} for all simple random samples of size 3 , and hence verify that \bar{y} is an unbiased estimate of \bar{Y}.
(5 marks)
ii) Calculate the population total \hat{Y} for all possible simple random samples of size 3, and verify the relation given by,
$E(\hat{Y})=\frac{n}{N} Y$, where Y is the population total.
(3 marks)
iii) Calculate s^{2} for all simple random samples of size 3 from the same population and verify that $E\left(s^{2}\right)=S^{2}$.
(4 marks)

QUESTION TWO

a) Show that the variance of the mean \bar{y} from a simple random sample is,
$V(\bar{y})=\frac{S^{2}}{n}(1-f)$
Where f denotes the sampling fraction.
b) Evaluate the variance of the population total estimate \hat{Y} from a simple random sample.
(4 marks)
c) Signatures to a petition were collected on 676 sheets. Each sheet had enough space for 42 signatures. The numbers of signatures per sheet were counted on a random sample of 50 sheets with the results shown in the table.

Number of signatures $\left(y_{i}\right)$	Frequency $\left(f_{i}\right)$
42	23
41	4
36	1
32	1
29	1
27	2
23	1
19	1
16	2
15	2
14	1
11	1
10	1
9	1
7	1
6	3
5	2
4	1
3	1

Estimate the total number of signatures to the petition and the 95% confidence limits.

(6 marks)

QUESTION THREE

a) Show that if in every stratum from stratified random sampling, the sample estimate \bar{y}_{h} is unbiased, then $\bar{y}_{s t}$ is an unbiased estimate of the population mean \bar{Y}.
(5 marks)
b) show that for stratified random sampling,

$$
\begin{equation*}
V\left(\bar{y}_{s t}\right)=\sum_{h=1}^{L} W_{h} S_{h}^{2} \frac{\left(1-f_{h}\right)}{n_{h}} . \tag{7marks}
\end{equation*}
$$

c) The results from a simple random sampling from a stratified population are given in the following table.

Stratum	N_{h}	n_{h}	\bar{y}_{h}	S_{h}^{2}
1	100	20	115.7	57.6
2	300	20	147.2	46.9
3	400	30	133.6	75.3

i) Evaluate $\bar{y}_{s t}$.
ii) Find the standard error of the estimate $\bar{y}_{s t}$.
(4 marks)

QUESTION FOUR

a) Show that with proportional allocation from stratified random sampling,
$V\left(\bar{y}_{s t}\right)=\frac{1-f}{n} \sum_{h=1}^{L} W_{h} S_{h}^{2}$.
b) Let $V_{\text {prop }}$ denote the variance for the estimate of the population mean per unit in stratified random sampling under proportional allocation, and let $V_{\text {ran }}$ denote the variance of the estimate of the population mean in a simple random sample. Show that $V_{\text {prop }} \leq V_{\text {ran }}$.
(8 marks)
c) In a population with $N=6$ and $L=2$, the values of $y_{h i}$ are $0,1,2$ in stratum 1 and $4,6,11$ in stratum 2. A sample of $n=4$ is to be taken. Show that the optimum allocation n_{h} when rounded to integers are $n_{h}=1$ in stratum 1 and $n_{h}=3$ in stratum 2.
(4 marks)
d) Show that in systematic random sampling $\bar{y}_{s y}$ is an unbiased estimate of the population mean given by \bar{Y}.
(3 marks)
Cuea/ACD/EXM/AUGUST - DECEMBER 2018 / MATHEMATICS AND COMPUTER SCIENCE Page 3

QUESTION FIVE

a) If variates y_{i}, x_{i} are measured on each unit of a simple random sample of size n , assumed large, and $\hat{R}=\frac{\bar{y}}{\bar{x}}$ is the ratio estimate of the population means, show that \hat{R} is an unbiased estimate of the ratio of the population means $R=\frac{\bar{Y}}{\bar{X}}$.
b) Show that the sample proportion $p=a / n$ from a simple random sample is an unbiased estimate of the population proportion $P=A / N$, where a is the sample total, A is the population total, n is the sample size and N is the population size.
c) Show that
$V(\hat{A})=\frac{N^{2} P Q}{n}\left(\frac{N-n}{N-1}\right)$.
d) For a population with $N=6, A=4, A^{\prime}=2$, work out the value of a for all possible simple random samples of size 3 , and verify that;
i) $E(p)=P$.
ii) $\frac{N-n}{(n-1) N} p q$ Is an unbiased estimate of the variance of $p .(\mathbf{3}$ marks)

END

