THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAIN EXAMINATION

AUGUST – DECEMBER 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

MAT 364: DESIGNA ND ANALYSIS OF SAMPLE SURVEYS

Date: DECEMBER 2018 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any other TWO Questions

QUESTION ONE

- a) Show that for a simple random sample,
- i) The sample mean \overline{y} , is an unbiased estimate of the population mean \overline{Y} . (6 marks)
- ii) The estimate of the population total \hat{Y} , is an unbiased estimate of the population total \hat{Y} . (5 marks)
- iii) Show that the sample variance s^2 for a simple random sample is an unbiased estimate of the population variance S^2 . (7marks)
- b) In a population with N = 6, the values of the observations y_i (i = 1,2,34,5,6) are 8, 3, 1,11,4 and 7.
- i) Calculate the sample mean \bar{y} for all simple random samples of size 3, and hence verify that \bar{y} is an unbiased estimate of \bar{Y} . (5 marks)
- ii) Calculate the population total \hat{Y} for all possible simple random samples of size 3, and verify the relation given by,

$$E(\hat{Y}) = \frac{n}{N}Y$$
, where Y is the population total. (3 marks)

iii) Calculate s^2 for all simple random samples of size 3 from the same population and verify that $E(s^2) = S^2$. (4 marks)

QUESTION TWO

a) Show that the variance of the mean \bar{y} from a simple random sample is,

$$V(\bar{y}) = \frac{S^2}{n} (1 - f)$$

Where f denotes the sampling fraction.

(10 marks)

b) Evaluate the variance of the population total estimate \hat{Y} from a simple random sample.

(4 marks)

c) Signatures to a petition were collected on 676 sheets. Each sheet had enough space for 42 signatures. The numbers of signatures per sheet were counted on a random sample of 50 sheets with the results shown in the table.

Number of signatures (y_i)	Frequency (f_i)	
42	23	
41	4	
36	1	
32	1	
29	1	
27	2	
23	1	
19	1	
16	2	
15	2	
14	1	
11	1	
10	1	
9	1	
7	1	
6	3	
5	2	
4	1	
3	1	

Estimate the total number of signatures to the petition and the 95% confidence limits.

(6 marks)

QUESTION THREE

- a) Show that if in every stratum from stratified random sampling, the sample estimate \bar{y}_h is unbiased, then \bar{y}_{st} is an unbiased estimate of the population mean \bar{Y} . (5 marks)
- b) show that for stratified random sampling,

$$V(\bar{y}_{st}) = \sum_{h=1}^{L} W_h S_h^2 \frac{(1 - f_h)}{n_h}.$$
 (7 marks)

c) The results from a simple random sampling from a stratified population are given in the following table.

Stratum	N_h	n_h	\overline{y}_h	S_h^2
1	100	20	115.7	57.6
2	300	20	147.2	46.9
3	400	30	133.6	75.3

i) Evaluate \overline{y}_{st} . (3 marks)

ii) Find the standard error of the estimate \bar{y}_{st} . (4 marks)

QUESTION FOUR

a) Show that with proportional allocation from stratified random sampling,

$$V(\bar{y}_{st}) = \frac{1-f}{n} \sum_{h=1}^{L} W_h S_h^2$$
 (5 marks)

b) Let V_{prop} denote the variance for the estimate of the population mean per unit in stratified random sampling under proportional allocation, and let V_{ran} denote the variance of the estimate of the population mean in a simple random sample. Show that $V_{prop} \leq V_{ran}$.

(8 marks)

- c) In a population with N=6 and L=2, the values of y_{hi} are 0, 1, 2 in stratum 1 and 4,6,11 in stratum 2. A sample of n=4 is to be taken. Show that the optimum allocation n_h when rounded to integers are $n_h=1$ in stratum 1 and $n_h=3$ in stratum 2. (4 marks)
- d) Show that in systematic random sampling \overline{y}_{sy} is an unbiased estimate of the population mean given by \overline{Y} . (3 marks)

QUESTION FIVE

- a) If variates y_i, x_i are measured on each unit of a simple random sample of size n, assumed large, and $\hat{R} = \frac{\overline{y}}{\overline{x}}$ is the ratio estimate of the population means, show that \hat{R} is an unbiased estimate of the ratio of the population means $R = \frac{\overline{Y}}{\overline{X}}$. (5 marks)
- b) Show that the sample proportion $p = \frac{a}{n}$ from a simple random sample is an unbiased estimate of the population proportion $P = \frac{A}{N}$, where a is the sample total, A is the population total, n is the sample size and N is the population size. (3 marks)
- c) Show that

$$V(\hat{A}) = \frac{N^2 PQ}{n} \left(\frac{N-n}{N-1} \right).$$
 (5 marks)

- d) For a population with N = 6, A = 4, A' = 2, work out the value of a for all possible simple random samples of size 3, and verify that;
 - i) E(p)=P. (4 marks)
 - ii) $\frac{N-n}{(n-1)N}$ pq Is an unbiased estimate of the variance of p.(3 marks)

END